## Binomial coefficients and the ring of $p$-adic integers

HTML articles powered by AMS MathViewer

- by Zhi-Wei Sun and Wei Zhang PDF
- Proc. Amer. Math. Soc.
**139**(2011), 1569-1577 Request permission

## Abstract:

Let $k>1$ be an integer and let $p$ be a prime. We show that if $p^{a}\leqslant k<2p^{a}$ or $k=p^{a}q+1$ (with $q<p/2$) for some $a=1,2,3,\ldots$, then the set $\{\binom nk: n=0,1,2,\ldots \}$ is dense in the ring $\mathbb {Z}_{p}$ of $p$-adic integers; i.e., it contains a complete system of residues modulo any power of $p$.## References

- William D. Banks, Florian Luca, Igor E. Shparlinski, and Henning Stichtenoth,
*On the value set of $n!$ modulo $a$ prime*, Turkish J. Math.**29**(2005), no. 2, 169–174. MR**2142292** - C. Cobeli, M. Vâjâitu, and A. Zaharescu,
*The sequence $n!\pmod p$*, J. Ramanujan Math. Soc.**15**(2000), no. 2, 135–154. MR**1754715** - Kenneth Davis and William Webb,
*A binomial coefficient congruence modulo prime powers*, J. Number Theory**43**(1993), no. 1, 20–23. MR**1200804**, DOI 10.1006/jnth.1993.1002 - Moubariz Z. Garaev and Florian Luca,
*Character sums and products of factorials modulo $p$*, J. Théor. Nombres Bordeaux**17**(2005), no. 1, 151–160 (English, with English and French summaries). MR**2152216** - Ronald L. Graham, Donald E. Knuth, and Oren Patashnik,
*Concrete mathematics*, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. MR**1397498** - Andrew Granville,
*Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers*, Organic mathematics (Burnaby, BC, 1995) CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253–276. MR**1483922** - Richard K. Guy,
*Unsolved problems in number theory*, 2nd ed., Problem Books in Mathematics, Springer-Verlag, New York, 1994. Unsolved Problems in Intuitive Mathematics, I. MR**1299330**, DOI 10.1007/978-1-4899-3585-4 - Hong Hu and Zhi-Wei Sun,
*An extension of Lucas’ theorem*, Proc. Amer. Math. Soc.**129**(2001), no. 12, 3471–3478. MR**1860478**, DOI 10.1090/S0002-9939-01-06234-7 - Kenneth Ireland and Michael Rosen,
*A classical introduction to modern number theory*, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR**1070716**, DOI 10.1007/978-1-4757-2103-4 - M. Ram Murty,
*Introduction to $p$-adic analytic number theory*, AMS/IP Studies in Advanced Mathematics, vol. 27, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2002. MR**1913413**, DOI 10.1090/amsip/027 - Z. W. Sun,
*On sums of primes and triangular numbers*, Journal of Combinatorics and Number Theory**1**(2009), 65–76.

## Additional Information

**Zhi-Wei Sun**- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
- MR Author ID: 254588
- Email: zwsun@nju.edu.cn
**Wei Zhang**- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
- Email: zhangwei_07@yahoo.com.cn
- Received by editor(s): December 26, 2009
- Received by editor(s) in revised form: May 15, 2010
- Published electronically: October 28, 2010
- Additional Notes: The first author is the corresponding author. He is supported by the National Natural Science Foundation (grant 10871087) and the Overseas Cooperation Fund (grant 10928101) of China
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**139**(2011), 1569-1577 - MSC (2010): Primary 11B65; Secondary 05A10, 11A07, 11S99
- DOI: https://doi.org/10.1090/S0002-9939-2010-10587-7
- MathSciNet review: 2763746