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ABSTRACT. The width of a closed convex subset of n-dimensional Euclid-
ean space is the distance between two parallel supporting hyperplanes. The
Blaschke-Lebesgue problem consists of minimizing the volume in the class of
convex sets of fixed constant width and is still open in dimension n > 3.
In this paper we describe a necessary condition that the minimizer of the
Blaschke-Lebesgue must satisfy in dimension n = 3: we prove that the smooth
components of the boundary of the minimizer have their smaller principal cur-
vature constant and therefore are either spherical caps or pieces of tubes (canal
surfaces).

INTRODUCTION

The width of a convex body B in n-dimensional Euclidean space in the direction
i is the distance between the two supporting hyperplanes of B which are orthogonal
to @. When this distance is independent of 4, B is said to have constant width. The
ratio Z(B) of the volume of a constant width body to the volume of the ball of
the same width is a homothety invariant, as is the isoperimetric ratio. Moreover,
the maximum of Z(B), like the minimum of the isoperimetric ratio, is attained
by round spheres. However, while the isoperimetric ratio is not bounded from
above, the infimum of 7 is strictly positive, since compactness properties of the
space of convex sets ensures the existence of a minimizer. It is known by the
work of Blaschke and Lebesgue that the Reuleaux triangle, obtained by taking
the intersection of three discs centered at the vertices of an equilateral triangle,
minimizes Z in dimension n = 2. The determination of the minimizer of Z in any
dimension is referred to as the Blaschke-Lebesgue problem.

Recently several simpler solutions of the problem in dimension 2 have been given
(see [Bal], [Ha]). However the Blaschke-Lebesgue problem in dimension n > 3
appears to be very difficult to solve and remains open. A crucial step in solving
the Blaschke-Lebesgue problem in dimension n = 2 consists of proving that the
boundary of the minimizer is made up of arcs of circles of radii equal to the width,
and hence the smooth parts of the boundary have constant curvature.

In this paper we give a property of the minimizer of the Blaschke-Lebesgue in
dimension n = 3 which generalizes the constant curvature condition observed in
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dimension n = 2 (here and in the following, “smooth” means “continuously twice
differentiable”):

Main Theorem. Let B be a local minimizer of the Blaschke-Lebesgue problem
in R® with constant width 2w. Then the smooth parts of its boundary have their
smaller principal curvature constant and equal to 1/2w.

It is easily seen that the boundary of a constant width body in R® cannot be
made up of only spherical caps, so the minimizer of the Blaschke-Lebesgue problem
must have a more complicated geometry. On the other hand, K. Shiohama and
R. Takagi proved in [ST] that a non-spherical surface with one constant principal
curvature must be a canal surface, i.e. the envelope of a one-parameter family of
spheres or, equivalently, a tube over a curve (i.e. the set of points which lie at a
fixed distance from this curve). Thus the main theorem implies the following:

Corollary. Let B be a local minimizer of the Blaschke-Lebesque problem in R3
with constant width 2w. Then the smooth parts of its boundary are spherical caps
or pieces of tubes, both of them with radius equal to the width 2w of B.

We observe that the constant width body having the best known ratio Z, Meiss-
ner body ([CG], [GK], [Ba]), satisfies this criteria: it is made up of four spherical
caps centered at the vertices of a tetrahedron and three tubes over three arcs of
circles. Therefore we cannot discard the possibility that it is the solution of the
Blaschke-Lebesgue problem, although one might expect the minimizer to have tetra-
hedral symmetry. Another interesting constant width body is the one obtained by
rotation of the Reuleaux triangle about an axis of symmetry. It is known that the
latter minimizes the ratio Z among constant width bodies with rotational symmetry
(see [CCG], [AG]). Tt is also interesting to note that this body satisfies our criteria
as well: one part of its boundary is a spherical cap, and the other one is a tube
over an arc of a circle. However, it has a bigger ratio Z than Meissner’s, which in
particular proves that the solution of the Blaschke-Lebesgue problem does not have
rotational symmetry.

In the light of our result, the most difficult issue to address seems to be that of
regularity. We cannot exclude a priori that the boundary of the minimizer of the
Blaschke-Lebesgue problem is singular everywhere, and the traditional techniques
of regularity theory (e.g. those used for harmonic maps or minimal surfaces) do
not seem to apply here. On the other hand, assuming that the minimizer is made
up of a finite number of smooth parts, our result reduces the problem to a kind
of combinatoric (though not easy) one: minimize the volume among the convex
bodies whose boundaries are made up of spherical caps and pieces of tubes, all of
them of the same radius.

As in [Bal, [Ha] and [AG], our proof is based on the analysis of the support
function s which characterizes a convex body B of constant width 2w. The first
point consists of evaluating the volume of B and the area of its boundary in terms
of w and the function h = s — w (Theorem [2)). Our formula allows us in particular
to easily prove the famous Blaschke formula, a functional relation between the
volume, the area and the width of B, and to recover the fact that the ratio Z
is maximized by round spheres. A crucial point is then the following observation,
stated in [GK]: flowing the boundary of a convex body along its inward unit normal
vector field preserves the constant width condition as long as the evolving surface
remains convex. Moreover, the ratio Z decreases along the flow, so the minimizer
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of Z must occur at the latest time such that convexity holds and therefore must be
singular. This issue is easily controlled since the function % is invariant along the
normal flow, while the width 2w decreases linearly. Thus, there exists a positive
number wq(h) such that for any w > wq(h), the function s = h + w is the support
function of some convex body of constant width 2w. Hence, we can restrict the
minimization process to the class of support functions of the form s = h + wg(h),
while all the necessary information is carried by the function h. The main theorem
is then obtained as follows: assuming that the smaller principal curvature is not
constant on some smooth part of the boundary, we compute the second variation
of Z for a suitable local deformation of h to get a contradiction.

The authors wish to thank the referee for correcting the statement of Theorem [3

1. THE GEOMETRY OF CONSTANT WIDTH BODIES

Let B be a convex body in R™ and denote by s its support function; i.e. s(u) =
sup, e (U, ©), Vu € S"'. Then the width w(u) of B in the direction u is related to
the support function by the following formula:

2w(u) = s(u) + s(—u),

where —u is the antipodal point of u in "~ '. Tt is known (see [Ho], [Bal) that if B
has constant width it must be strictly convex; moreover it is proven in [Ho| that the
support function s of a constant width body is C'; i.e. it admits first derivatives
which are Lipschtiz continuous. By the Rademacher theorem, it follows that the
second derivatives are well defined almost everywhere and bounded. This fact will
be important later on, since the geometry of the boundary of B will be expressed
in terms of the Hessian of h.

If B is a strictly convex body in R™ whose support function s belongs to C'*!,
the map

f: st R™,
u = s(u).u+ Vs(u)

is a parametrization of its boundary and w is the Gauss map of 0B.
Given an arbitrary strictly convex body B, let w € R be the mean of its support
function s on S" !,

B fsn,l s(u)dA
o adA
where dA denotes the canonical volume form on S" ™!, and introduce the zero mean

map h := s—w. Then B has constant width 2w if and only if the function A is odd,
ie.

w:

h(u) + h(—u) = 0.
The following inequality will be crucial for us:

Proposition 1 (Wirtinger inequality). Let h € CY(S"™1) with vanishing mean
and let dA be the volume element on S"~1. Then

1
£(h) = / ( Vh[2 — h2> dA >0,
§n—1 n—l

with equality if h is a first eigenfunction of the Laplacian on the sphere S*~1.
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This result is easily proved once the theory of spherical harmonics, generalizing
Fourier analysis to higher dimension, is developed (see [GW], p. 1288).

From now on we restrict ourselves to the case of dimension 3. Our first step
consists of expressing the local geometry of the boundary of a convex body B
in terms of the data (h,w). We recall that the Hessian of h is the symmetric
tensor defined by Hess(h)(X,Y) = (VxVh,Y), where V denotes the Levi-Civita
connection of the round metric of S, The two invariants of Hess(h) are its trace,
which is the well known Laplace-Beltrami operator A, and its determinant, which
we shall denote in the following by H(h).

Theorem 1. The area element of OB, denoted by dA, is given by
dA = (w? 4+ aw + B)dA,

where we set
a:=2h+Ah and B:=h®+hAh+ H(h).

Moreover, its principal curvatures k1 and ko, whenever they exist, take the following

form:
i 2w+ a £ /a2 —4p
12 = .

' 2(w? + aw + B)

In the case where B has constant width, we deduce the following formulas for
its volume V(B) and the area of its boundary A(9B):

Theorem 2. Let B be a convex body of constant width 2w in R3. Then
T .
V(B) = S’ —wé(h),
A(OB) = 4mw?* — £(h).

This allows us to recover the famous Blaschke formula, a functional relation
between the volume, the area and the width:

Corollary 1 (Blaschke formula). Let B be a convex body in R? of constant width
2w. Then

V(B) = wA(OB) — gmﬁ.

The proofs of Theorems [I] and 2] are postponed until the end of the paper (Sec-
tions 4 and 5).

2. THE BLASCHKE-LEBESGUE PROBLEM

Let B be a convex body of constant width 2w and denote by B,, the round ball
of radius w. Introduce the ratio

_vB) _ V(B
1(B) = V(B,) 4rw3/3’
By Theorem 2, we have
IZ(B) =Z(h,w) =1 — 455;)/3

It follows from the Wirtinger inequality that the ratio Z(B) is less than or equal to
1 and that equality is attained when h is a first eigenfunction of the Laplacian, as
it is in the case of balls B = B,,. Moreover, for a given h, Z increases with respect
to w. Hence it reaches its minimum at the lowest value of w such that h+w = s is
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the support function of a convex body; we define wq(h) to be this crucial quantity.
Increasing (resp. decreasing) the value of w corresponds geometrically to flowing
the boundary of B parallel to itself, i.e. along its outward (resp. inward) normal
vector. Therefore the map h corresponds to a one-parameter family of parallel
surfaces, labelled by the parameter w € [wg(h),00). The inward normal flow can
be continued as long as the surface is smooth. By Theorem [I] this is equivalent to
the fact that the area element dA is strictly positive. Hence, we deduce an explicit
expression for wg(h),

wo(h) = inf {w € R*| w? + aw+ B >0 ae. on SQ} ,
and the convex body B corresponding to s = h + wg(h) is always singular.

Remark 1. One can check that wo(h) = [|[W(h)||pe s2), where

W (h)(u) == —atvai=p \/20‘2_@

The directions u of S? where the area element vanishes correspond precisely to
points f(u) of the boundary which are singular. The next theorem shows that in
the smooth parts of a local minimizer of Z, such a situation actually occurs for
every pair of antipodal directions (u, —u). We point out that this result is roughly
equivalent to one of the main results of [BLO] (Theorem 5).

Theorem 3. Let (h,wo(h)) be a local minimizer of Z(h,w) and let U be an open
subset of S* where h is smooth. Then for every point u of U, the area element dA
vanishes at one of the points u and —u.

Proof. We proceed by contradiction, assuming that there is an open subset U of S*
where h is smooth and such that (wg(h))%+awg(h)+8 > 0in UU(=U). Consider a
smooth map v such that v(u) +v(—u) = 0,Vu € S and whose support is contained
in UU (=U), and define the deformation h¢ := h + ev of h. For small ¢,

wo(h) = wo(h);

hence

E(he) E(h) 5E(h,v) €% 8%2E(h,v)

= € —_

wi(he)  wi(h)  wih) 2 wi(h)
As h is a minimizer of Z, and thus a maximizer of £(h)/w3(h), we must have both
§E(h,v) =0 and 62€(h,v) < 0. On the other hand the functional £ is quadratic so
that 626 (h,v) = £(v), which is positive by the Wirtinger inequality (Proposition[]).
Finally, the support of v being contained in UU (—U), v cannot be an eigenfunction
of the Laplacian, and we obtain the required contradiction.

+ o(€?).

3. PROOF OF THE MAIN THEOREM

We are now in position to prove our main result: assume that B is a local
minimizer of Z(B) and let h be the associated map. For the sake of brevity we set
W := wo(h) in the following. Let U be an open subset of S? such that f(U) is a
smooth part of 9B. In particular, by Theorem [I, %2 + o + 8 > 0 on U. Hence
by Theorem Bl @2 + a(u)w + f(u) = 0,Vu € —U. Since « is odd and 3 is even, it
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follows that w? — a(u)w + B(u) = 0, Yu € U. Consequently, by Theorem [}

20+ o+ /a2 -4 20+ a+Va? — o + 4w?

ki =

2002 +aw + B)  2(w2 + o + (o — w2))
20 + a + |a — 20|
- 4o ’
so that k1 = é and ko = ﬁ Hence the principal curvature ko is constant on U

and equal to the inverse of the width 2w of B. Finally, since a(u) > 0, we have
20 = —a(—u) + /a2(—u) — 4B(—u) = a(u) + v/a2(u) — 43(u) > a,

SO ﬁ < é; that is, ko is the smaller curvature, and the proof is complete. ([

4. THE LOCAL GEOMETRY OF dB (PROOF OF THEOREM [I))

Let (z,y)(u) be an isothermic coordinate chart from a dense subset of S? into
an open subset U of R? (for example the stereographic projection onto U = Rz),
and denote by e” the conformal factor, i.e. €” = |0;] = |0y|. In particular the
area element is given by dA = e"dxdy. The coeflicients of the Hessian of h in the
coordinates (z,y) are

a:=e ?(Vy, Vh,d,),
bi=e ?"(Vo,Vh,0,) = e *(Vy,Vh,o,),
c:=e*"(Vy,Vh,0,).
We recall that the boundary of 9B is parametrized by f(u) = s(u)u + Vs(u) =
s(u)u + Vh(u). In order to compute the first derivatives of f, we use the Gauss

formula of the embedding of the sphere S? in R?, which relates the flat connection
D of R® to the Levi-Civita connection V on the sphere:

(DxY)(u) = (VxY)(u) — (X, Y)u.
It follows that
fo =80, + Vo, Vh = (s+a)0; + bd,
and
fy =80y + Vo, Vh =00, + (s + c)0,.

The trace a + ¢ = Ah and the determinant H(h) := ac — b2 of the Hessian matrix
of h are intrinsic quantities; i.e. they depend only on the metric on S? and not on
the choice of coordinates.

We then compute the coefficients of the first fundamental form of the immer-
sion f:

Ei=(fo fa) = (s +a)* +6")e”,  Fi={fo, fy) = 25+ a+c)be”,
G = (fy fy) = (s + )" + )™
It follows that
VEG — F2e7%" = (((s +a)?2 +0)((s+¢)>+b%) —4(s+a+s+ 0)262)1/2
= (s*+s(a+c)+ac—b*) = (W + (2h+a+c)w+h* + (a+ c)h + ac — b?),
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and we deduce the first part of Theorem [Ik

dA = \VEG — F2dady = VEG — F2e 2" dA
= ((w? + (2h+ Anyw + * + AR + H(R) )dA.
Next we calculate the coefficients of the second fundamental form: since N(u) =
u, we have
1= (0:N(u), fa) = (0w, fo) = ¥ (s + a),
:N(u), fy) = (Opu, f,) = €D,
OyN (), fy) = (Dyu, fy) = ¥ (s + c).

m =

o~ o~

Thus
IG+nE —2mF
=" ((s+a)((s+0)* + %) + (s +)((s + a)” +b”) = 20*(2s + a + ¢))
=" ((s+a)(s+c)(2s+a+c)—b*(2s+a+c))
=" (w? + aw + B) (2w + a)
and
In—m? = el ((s+0)(s +a) = %) =¥ (w® +aw+5).

Thus, at a point f(u) where dA does not vanish, the mean curvature and the
Gaussian curvature of B are given by

QH:ZG+nE—2mF: 2w + «
EG — F? w2+ aw + 8
and
K In —m? _ 1 7
EG-F? w+aw+p
so that
2w + a)? — 4(w? + aw + B) a? —4p3

H?>-K = = ,
4(w? + aw + B)? 4(w? 4+ aw + B)?

Hence the principal curvatures k; and ko of the immersion at the point f(u) are

2 + /a2 -4
hio— H4 V2 _ K = 20 totyva®—45
' 2(w? + aw + fB)

5. VOLUME AND AREA OF dB (PROOF OF THEOREM [2))
The only tricky part of the proof is the following lemma:

Lemma 1. If B has constant width, then

1
H(h)dA = —/ |Vh|?dA.
Sz 2 S2

Proof. Denoting the complex structure on S? by j, we have jd, = Oy, jOy = —0y.
The proof is based on the following formula for the curvature tensor on the sphere:

<R(X7Y)Za W> = <X7Z><Ya W> - <KZ><X7W>
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with X = 0,,Y =0y, Z = Vh,W = jVh. On the one hand,

/U (X, 2) (Y. W) — (Y, Z)(X, W))dzdy
- /U (0 V1) (705, 7V RY — (By, Vh)(By, VRY) dady

:/(h§+h§)dxdy:/ |Vh|2dA.
U S2

On the other hand, using the fact that j is parallel, i.e. VxjY = jVxY, we have

/U (R(Ds, 8,)Vh, jVh)dzdy
= /U ((Va,Va,Vh, jVh) — (Va, Vo, Vh, jVh))dzdy
= /U (=(Vo,Vh,Va,jVh) + (Va,Vh,Va,jVh))dzdy
= /U (=(Vo,Vh,jVa,Vh) + (Va,Vh, jVa, Vh))dzdy
_9 /U (Yo, Vh, Vo, Vh))drdy
= 2/U<(b8x +¢d,), (—bdy + ady))dxdy

= 2/ (ac — b*)e*"dxdy =2 [ H(h)dA;
U S2

hence the proof of the lemma is complete. O
In order to calculate the volume of B, we use the divergence theorem. Recalling

that w is the unit outward normal vector of the smooth parts of 0B and that
f(u) = s(u)u + Vh(u), we have

V(B) = % S2<f(u),u>dfl = %/52 s(u)dA
1

g/sz(h—l—w)(w2 + aw + B)dA

w? w? w 2
— | dA+— [ (Bh+Ah)dA+ — | (3h*+2hAh+ H(h))dA
3 Jse 3 Jse 3 Js2

1
+ 5/ (h® + h?Ah + hH(h))dA.
S2

Since h has zero mean, the coefficient of w? vanishes. Moreover, the constant width
condition, i.e. the oddness of h, implies that all the cubic expressions of h and its
second derivatives are odd and hence have zero mean. Thus the constant term
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vanishes. Finally, using the divergence theorem and Lemma [Il we obtain

VB—“’—3 dA h? 22,1 Vh? ) dA
()f3 +w82 + 3+6||

S2
3
_ dmwt w/ <1|Vh|2 - h2> dA
3 S2 2
3
= T e (n)

which is the required formula.
The computation of the area of B uses Lemma[Il as well and is straightforward:

[AG]
[Ba]

[BLOJ

(elele]

[CG]

[GK]
([GW]
[Ha
[Ho]

[ST]

A(0B) /aB dA = /S (w? + (2h + Ah)w + (h® + hAh + H(h))) dA

1
wQA(S2)+/ h2dA+/ |Vh|2dA—§/ |Vh|2dA
S2 SQ S2
4r% — E(h).
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