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A COMPARISON PRINCIPLE FOR HAMILTON-JACOBI

EQUATIONS WITH DISCONTINUOUS HAMILTONIANS

YOSHIKAZU GIGA, PRZEMYS�LAW GÓRKA, AND PIOTR RYBKA

(Communicated by Matthew J. Gursky)

Abstract. We show a comparison principle for viscosity super- and subso-
lutions to Hamilton-Jacobi equations with discontinuous Hamiltonians. The
key point is that the Hamiltonian depends upon u and has a special structure.
The supersolution must enjoy some additional regularity.

1. Introduction

The purpose of this paper is to give a simple proof of a comparison principle for
bounded, uniformly continuous sub- and supersolution solutions to the Hamilton-
Jacobi equation

(1.1) dt +H(t, x, d, dx) = 0 in (0, T )× R

when the Hamiltonian H is discontinuous and depends in a non-trivial way on d.
It is well-known that, in general, if H is discontinuous in x, then the comparison
principle may fail.

Here, we assume a special structure of H and its line of discontinuity. It comes
from the singular curvature flow, considered in [8]. Namely, the equation studied
there leads to the following form of H:

(1.2) H(t, x, u, p) =

{
−σ(t, r∗(t), u)m(p) if |x| < r0(t),
−σ(t, x, u)m(p) if |x| ≥ r0(t).

Here, we explain the assumption starting from the line of discontinuity.

(R1) r0 and r∗ belong to C0([0, T ]) and r∗(t) > r0(t) for all t ∈ [0, T ]. In addition,
the set {(t, r0(t)) : t ∈ [0, T ]} is a Lipschitz curve.
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Let us remark that r0 need not be Lipschitz continuous as a function of t as in
the case of r0(t) =

√
t+ 1. The set in question is a subset of a parabola.

The conditions we present are not optimal, but they are simple enough and
permit us to present the main argument. We have to specify restrictions on the
other components. We assume that σ ∈ C1 is bounded, even as a function of x or
u, while other arguments are fixed. It is also increasing with respect to x as well
as u, provided that x, u > 0. In addition,

(1.3) 0 < σu(t, x, u) ≤ M

and m is a positive convex function with linear growth at infinity. In the present
paper, however, no conditions on m are necessary except for continuity.

In [8, Theorem 4.3] we showed a comparison principle for special bounded, even,
Lipschitz continuous sub- and supersolution solutions to (1.1). We required in [8]
that the supersolution be increasing on [0,+∞), while the subsolution be constant
over [0, a(t)] for a(t) ≥ r0(t) for all t ∈ [0, T ].

Here, we prove the Comparison Principle (see Theorem 2.7) without these struc-
tural restrictions on sub- and supersolution solutions; however, we impose moder-
ate regularity assumptions. Before explaining our method, we will comment on the
available literature.

Let us mention that while the notion of semicontinuous super- and subsolutions
for discontinuous Hamiltonians is well-defined (see [1], [9] [10]), the authors fre-
quently assume in the statements of their Comparison Principles that either the
supersolution of the subsolution is at least Lipschitz continuous [2], [3], [4], [5], [6],
[11].

There are various kinds of motivation for studying problems like (1.1). One stems
from image analysis, like the ‘shape-from-shading’ problem [4], [11], and another
is from flame propagation or etching [3] or from game theory [6]. In those papers
(1.1) is a general form of the eikonal equation and H does not depend upon u. For
us (1.1) is a result of degeneration of a second order parabolic problem (see [8])
where the dependence of H upon u is essential.

There is a spectrum of assumptions on admissible discontinuities with respect
to x and t. Jump discontinuities across Lipschitz hypersurfaces are quite common
[3], [5], [6], [11]. We may add that sometimes the authors admit triple junctions
of the discontinuity set; see [5]. In [4] jump discontinuities are admitted along a
set of vertical and horizontal intervals. The most general situation is considered in
[2], where the authors must use tools from measure theory and consider a slightly
different notion of solution.

Our comparison principle does not require any special condition on the kind of
dependence of H upon p except continuity. On the other hand, [2], [4], [5] need
coercitivity, while the authors of [2], [11] assume convexity in p. Sometimes other
conditions are used, such as 1-homogeneity with respect to p (see [6]) or linear
growth at infinity (see [3]).

We deal, however, with the graph over the real line, so we have to control the
behavior of supersolutions at infinity. For this purpose we introduce a convenient
technical notion of supersolution at infinity. We also find it convenient to work
with strict supersolution, but understood differently than in [11].

Our method of proof of Theorem 2.7 is based upon the idea of shifting the
supersolution v away from the discontinuity of H so that the shifted v becomes a
strict supersolution. We also regularize H in a proper manner, so that the strict
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supersolutions remain supersolutions and subsolutions remain subsolutions as well.
This permits us to use classical results and deduce our claim.

2. The comparison principle

We first recall from [8, Definition 1] (see [1], [9] and more recently from [4]
and also [7]) the notion of a sub-/supersolution to (1.1) in case of a discontinuous
Hamiltonian.

Definition 2.1. (a) We shall say that a bounded, uniformly continuous function
u : (0, T ) × R → R is a viscosity subsolution of (1.1) provided that for all C1

functions ϕ : (0, T )×R → R such that u−ϕ has a local maximum at (t0, x0), then

ϕt(t0, x0) +H∗(t0, x0, u(t0, x0), ϕx(t0, x0)) ≤ 0.

(b) We shall say that a bounded, uniformly continuous function v : (0, T )×R → R

is a viscosity supersolution of (1.1) if for all C1 functions ϕ : (0, T )× R → R such
that v − ϕ has a local minimum at (t0, x0), then

ϕt(t0, x0) +H∗(t0, x0, v(t0, x0), ϕx(t0, x0)) ≥ 0.

(c) We shall say that a bounded, uniformly continuous function d : (0, T )×R → R

is a viscosity solution of (1.1) provided that it is a viscosity subsolution as well as
a viscosity supersolution of (1.1).

For the sake of self-consistency we briefly recall the definitions of an upper semi-
continuous envelope, H∗, and a lower semicontinuous envelope, H∗, for a locally
bounded function H : (0, T )× R

3 → R. Namely, we set

H∗(z) = lim inf
ζ→z

H(ζ), H∗(z) = lim sup
ζ→z

H(ζ).

We notice that Definition 2.1 is in the line of notion of sub-(super-)solution
introduced by [1], [9] and more recently by [4] for discontinuous Hamiltonians.

We shall describe our assumptions on H which slightly generalize formula (1.2)
above.

We begin with continuity requirements:
(H1) Hamiltonian H is lower semicontinuous in [0, T ]× R× R× R.
(H2) H is continuous away from Γ×R

2, where Γ = {(t,±r0(t)) : t ∈ [0, T ]} and
has a jump discontinuity at Γ× R

2.
(H3) H∗ is continuous in G× R

2, where G = {(t, x) : |x| ≥ r0(t)}, while H∗ is
continuous on the closure of (([0, T ]× R) \G)× R

2.

Remark 2.2. Essentially it is possible to express (H3) just in terms of H, but we
do not find it elegant. We could say that the set (([0, T ] × R) \ Γ) × R

2 has two
connected components U1 and U2. The function H is continuous on each of the
components and can be continuously extended from Ui onto its closure U i, i = 1, 2.

Symmetry of H is just for the sake of simplicity. That is, we impose:
(H4) For any ε1, ε2 in {−1, 1} we have H(t, ε1x, u, ε2p) = H(t, x, u, p).
Monotonicity of our Hamiltonian is crucial for our argument. We shall frequently

use the following condition:
(H5) The Hamiltonian H is strictly increasing with respect to u; i.e. there is a

positive constant h0 such that the following inequality holds for all u2, u1, x, t and
p:

(2.1) H(t, x, u2, p)−H(t, x, u1, p) ≥ h0(u2 − u1).



1780 YOSHIKAZU GIGA, PRZEMYS�LAW GÓRKA, AND PIOTR RYBKA

(H6) For all t, u and p, the function x �→ H(t, x, u, p) is decreasing for x > r0(t);
moreover, H(t, x, u, p) = H(t, r∗(t), u, p) for x ∈ [−r0(t), r0(t)].

Remark 2.3. It is possible to convert H given by (1.2) into one satisfying (2.1) by
means of the following change of variables v = etλu, where λ = −2M and M is
the constant appearing in (1.3). Nonetheless, even the transformed Hamiltonian,
Hnew, will have a jump in (t, x) at (t,±r0(t)). It has the following form:

(2.2) Hnew(t, x, v, p) = 2Mv + e−2MtH(t, x, e2Mtv, e2Mtp).

Interestingly, property (2.1) is inherited by H∗ and H∗.

Corollary 2.4. If H satisfies (2.1), then so do H∗ and H∗ with the same constant
h0.

Proof. By the definition of H∗(t, x, u, p) there is a sequence (tn, xn, u
1
n, pn) converg-

ing to (t, x, u1, p) such that

lim
n→∞

H(tn, xn, u
1
n, pn) = H∗(t, x, u1, p).

By (2.1) we have

H(tn, xn, u2, pn)−H(tn, xn, u
1
n, pn) ≥ h0(u2 − u1

n).

By definition of H∗ the inequality H∗(tn, xn, u2, pn) ≥ H(tn, xn, u2, pn) always
holds. Since H∗ is upper semicontinuous we have

H∗(t, x, u2, p)−H∗(t, x, u1, p) ≥ lim sup
n→∞

H(tn, xn, u2, pn)− lim
n→∞

H(tn, xn, u
1
n, pn)

≥ lim
n→∞

h0(u2 − u1
n) = h0(u2 − u1).

Hence, H∗ indeed satisfies (2.1).
In order to show (2.1) for H∗ we proceed in a similar way: we take a sequence

(tn, xn, u
2
n, pn) converging to (t, x, u2, p) such that

lim
n→∞

H(tn, xn, u
2
n, pn) = H∗(t, x, u, p).

Subsequently, we apply the lim inf to the inequality

H(tn, xn, u
2
n, pn)−H∗(tn, xn, u

1
n, pn) ≥ h0(u

2
n − u1).

Our claim follows. �

In order to state and establish our result we need a technical device which is
used to control the behavior of a supersolution at infinity. This is so because our
region has no boundary. This requires another condition on the Hamiltonian:

(H7) lim
|x|→∞
p→0

H(t, x, u, p) = H∞(t, u), and the convergence is locally uniform with

respect to (t, u) ∈ [0, T ]× R. In particular, H∞ does not depend upon p.
In [8] we considered in fact piecewise C1 solutions. We need them here as well.

We also make precise what we shall call here a piecewise C1 function in order to
make the next notion more meaningful.

Definition 2.5. We shall say that a Lipschitz continuous function w is a piecewise
C1-function (with discontinuity of the derivative along {|x| = r0(t)}) provided
that there are disjoint open sets, Ui ⊂ (0, T ) × R, i = 1, . . . , Nw, Nw ∈ N, such

that: (a) [0, T ] × R =
⋃Nw

i=1 Ūi, (b) each Ui has Lipschitz boundary, (c) the set
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{t ∈ [0, T ] : (t, r0(t)), (t,−r0(t))} is contained in
⋃

i ∂Ui, (d) there exist two indexes
i0 and j0 and a positive number μ0 such that

(0, T )× (−∞,−μ0] ⊂ Ūi0 and (0, T )× [μ0,+∞) ⊂ Ūj0 ,

(e) w|Ūi
∈ C1(Ūi); i.e. the derivatives can be extended to Ūi as continuous functions.

Once we have imposed restrictions on the behavior of H by requiring (H7), we
can introduce another notion.

Definition 2.6. For H satisfying (H7) we shall say that a piecewise C1-function
w is a supersolution at infinity provided that w is a supersolution and that the
following limits exist and are uniform with respect to t ∈ [0, T ]:

wt → w∞
t , w → w∞, wx → 0 as |x| → ∞

and

(2.3) w∞
t (t) +H∞(t, w∞(t)) ≥ 0.

We shall call w a strict supersolution at infinity if it is a supersolution at infinity
and the inequality in (2.3) is strict.

Here is our main result. It is worth noticing that we do not impose on the Hamil-
tonian either coercitivity or convexity in p. In particular, the Hamiltonian given
in (2.2) satisfies all our conditions provided that σ in (1.2) converges uniformly, as
|x| → ∞, to some σ∞ ∈ C1((0, T )× R).

Theorem 2.7. Let us assume that a measurable function H satisfies (R1) and
(H1)–(H7) and that for u, v ∈ BUC([0, T ]× R) the following conditions are valid:

(a) v is a supersolution to (1.1), u is a subsolution to (1.1) and u(0, x) ≤ v(0, x).
(b) v is a piecewise C1-function.
(c) v is a supersolution of (1.1) at infinity.

Then, for all t > 0,
u(t, x) ≤ v(t, x).

The above statement is rather long; however, the content is quite simple: we
have to impose conditions permitting us to control the behavior of Hamiltonian H
and of super- and subsolutions at infinity. Moreover, we assume that the set of
non-differentiability points of the supersolution is small and sets of discontinuities
of H and vx are ‘aligned’.

We shall proceed in several stages: we will move the problem away from the
jump discontinuity of H by considering a “shifted supersolution”. We also modify
H to make it a continuous function. Subsequently, we apply the classical results
for continuous Hamiltonians.

In order to state our next observation it is convenient to introduce the notion of
a strict supersolution. It is known in the literature (see e.g. [11] for C1 sub- and
supersolutions); here however we relax the regularity assumptions.

Definition 2.8. We shall say that a supersolution v is a strict supersolution of
(1.1) if for any test function ϕ ∈ C1 such that v − ϕ has a minimum at (t0, x0),
then

ϕt(t0, x0) +H∗(t0, x0, v(t0, x0), ϕx(t0, x0)) > 0.

We define a strict subsolution of (1.1) in a similar way.

We may now state our next observation as follows.
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Proposition 2.9. Let us suppose that the assumptions (R1) and (H1)–(H7) hold.
If v is a supersolution of (1.1), then so is v+ ε for any positive ε. Moreover, v+ ε
is a strict supersolution.

Proof. Since v is a supersolution, the inequality in Definition 2.8 is obvious due to
the strict monotonicity of H∗ shown in Corollary 2.4. �

Let us now define the regularized Hamiltonian. For δ > 0 we set

Hδ(t, x, u, p)

=

⎧⎨
⎩

H(t, x, u, p) |x| ≥ r0(t) + δ,
(1− λ

δ )H(t, r∗, u, p) + λ
δH(t, r0 + δ, u, p) |x| = r0(t) + λ, λ ∈ (0, δ),

H(t, r∗(t), u, p) |x| ≤ r0(t).

Note that λ depends on x and t. Here is our first observation on Hδ.

Lemma 2.10. If u is a subsolution to (1.1), then it is also a subsolution to

(2.4) dt +Hδ(t, x, d, dx) = 0.

Proof. The claim follows immediately from the inequality

Hδ(t, x, u, p) ≤ H∗(t, x, u, p). �

We are ready for a definition of a shifted supersolution vδ. We set

vδ(t, x) =

⎧⎨
⎩

v(t, x− δ) for x > δ,
v(t, 0) for x ∈ [−δ, δ],
v(t, x+ δ) for x < −δ.

As a result vδ is a uniformly continuous function.
We have to show that for a given ε, for a sufficiently small δ, the function vδ + ε

is indeed a supersolution to (2.4).

Lemma 2.11. Let us suppose that assumptions (R1) and (H1)–(H7) hold and that:
(a) w is piecewise a C1 function;
(b) w is a supersolution of (1.1);
(c) w is a supersolution at infinity of (1.1).

Then, for any ε > 0 there is such a δ0(ε) > 0 that for any δ ∈ (0, δ0(ε)), the function
wδ + ε is a supersolution of (2.4).

Proof. By Proposition 2.9 w+ ε, ε > 0, is a strict supersolution of (1.1). We claim
that the restrictions imposed on the behavior of w at infinity permit us to show
a stronger inequality than that postulated by Definition 2.8. Namely, there exists
η > 0 such that for any test function ϕ such that the difference w − ϕ attains its
minimum at (t, x) ∈ (0, T )× R we have

(2.5) ϕt(t, x) +H∗(t, x, w(t, x) + ε, ϕx(t, x)) ≥ η > 0.

Indeed, we noticed that H∗ satisfies (2.1) with the same h0 as H. Thus, we deduce

ϕt(t, x) +H∗(t, x, w(t, x) + ε, ϕx(t, x))

≥ ϕt(t, x) +H∗(t, x, w(t, x), ϕx(t, x)) + h0ε ≥ h0ε =: η > 0.

In other words, (2.5) holds for all (t, x) ∈ (0, T )× R, as desired.
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We notice that due to (2.1) the Hamiltonian at infinity H∞ is also strictly
increasing with respect to u. It is sufficient to pass to the limit in (2.1) to deduce
that

H∞(t, u2)−H∞(t, u1) ≥ h0(u2 − u1).

This inequality combined with (2.3) shows that w + ε is a strict supersolution at
infinity.

We will now show that wδ + ε is a supersolution. We need to show that for a
test function such that wδ − ϕ attains its minimum at (t, x),

(2.6) ϕt +Hδ(t, x, wδ + ε, ϕx) ≥ 0.

We first consider x > r0(t) + δ; then we have

ϕt(t, x) +H(t, x, wδ(t, x) + ε, ϕx(t, x)) = ϕt(t, x) +H(t, x, w(t, x− δ) + ε, ϕx(t, x)).

We write y = x− δ; hence y+ δ > r0(t) + δ. We notice that H is locally uniformly
continuous in G × R

2. Indeed, because of the assumed uniform convergence of
H to H∞ for a given η we can find such an R where for |y|, |z| ≥ R ≥ μ0 we
have |H(t, y, w, p) − H(t, z, w, p)| < η. Due to compactness of the set G ∩ BR(0),
function H is uniformly continuous on F = (G ∩ BR(0)) × [−‖w‖∞ − 1, ‖w‖∞ +
1]× [−‖wx‖∞, ‖wx‖∞].

Let us now introduce a new test function by the formula ψ(t, y) = ϕ(t, y + δ).
We have to check that |ψx| ≤ ‖wx‖∞. This is indeed so because the inequality
(w(t, z) − ψ(t, z)) ≥ 0 for z �= y in a neighborhood of y implies that w+

x (t, y) ≥
ψx(t, y) and w−

x (t, y) ≤ ψx(t, y). Since (2.5) holds, we can find δ so that

ψt(t, y)+H(t, y+δ, w(t, y)+ε, ψx) ≥ ψt(t, y)+H(t, y, w(t, y)+ε, ψx)−η ≥ η−η = 0.

This proves the claim for x > r0(t) + δ.
Suppose now that δ < x < r0. In this case H(t, x − δ, u, p) = H(t, r∗(t), u, p),

and it is by definition smaller than Hδ(t, x, u, p). Then, after setting y = x− δ and
introducing the same new test function ψ, by (2.5) we have

ψt(t, y) +Hδ(t, y+ δ, w(t, y) + ε, ψx(t, y)) ≥ ψt(t, y) +H(t, r∗, w(t, y), ψx(t, y)) ≥ 0.

Our claim holds again.
Now we take x ∈ [r0(t), r0(t) + δ) and proceed as before. We notice that

ϕt(t, x) +Hδ(t, x, wδ(t, x) + ε, ϕx(t, x))

= ϕt(t, x) +Hδ(t, x, w(t, x− δ) + ε, ϕx(t, x))

> ψt(t, y) +Hδ(t, y + δ, w(t, y), ψx(t, y))

≥ ψt(t, y) +H(t, r∗(t), w(t, y), ψx(t, y)) ≥ 0.

Let us now suppose that |x| ≤ δ. In this case, we denote the modulus of con-
tinuity of H∗ on the closure of (([0, T ] × R) \ G) × R

2 by ΩH and the modulus of
continuity of w by Ωw. After this preparation we see that

ϕt(t, x) +Hδ(t, x, wδ(t, x) + ε, ϕx(t, x)) = ϕt(t, x) +Hδ(t, x, v(t, 0) + ε, ϕx(t, x))

≥ ϕt(t, x) +Hδ(t, x, w(t, x) + ε, ϕx(t, x))− ΩH(Ωw(δ))

≥ ϕt(t, x) +Hδ(t, x, w(t, x), ϕx(t, x))− ΩH(Ωw(δ)) + h0ε ≥ 0.

The last inequality is the definition of δ0(ε), which must be so small that ΩH(Ωw(δ))
≤ h0ε.
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If −r0 ≤ x < −δ we proceed as follows:

ϕt(t, x) +Hδ(t, x, wδ(t, x) + ε, ϕx(t, x))

= ϕt(t, x) +Hδ(t, x, w(x+ δ) + ε, ϕx(t, x))

= ψt(t, y) +Hδ(t, y − δ, w(t, y) + ε, ψx(t, y))

> ψt(t, y) +H(t, r∗(t), w(t, y), ψx(t, y)) ≥ 0.

Our claim holds again.
For the remaining cases of negative x, i.e. when x ∈ (−r0(t) − δ,−r0(t)), the

reasoning is the same. With the previous notation we have

ϕt(t, x) +Hδ(t, x, wδ(t, x) + ε, ϕx(t, x))

= ϕt(t, x) +Hδ(t, x, w(x+ δ) + ε, ϕx(t, x))

= ψt(t, y) +Hδ(t, y − δ, w(t, y) + ε, ψx(t, y))

> ψt(t, y) +H(t, r∗(t), w(t, y), ψx(t, y)) ≥ 0.

The case of x < −r0(t)−δ is handled the same as the situation when x > r0(t)+δ.
We omit the details.

Finally, we consider points (t, x) = (t,±(r0(t) + δ)). These are translations of
special points of H. Let us first consider (t, x) = (t, r0(t)+δ). For any test function
ϕ we have to show that

L := ϕt +Hδ(t, r0(t) + δ, wδ(r0(t) + δ, t) + ε, ϕx)

= ϕt +H∗(t, r0(t) + δ, w(r0(t), t), ϕx) ≥ 0.

Since H∗ is uniformly continuous in (G ∩ ([0, T ] × [0, R])) × [−R,R]2, we can find
δ(ε) so that (2.5) implies

L ≥ ψt(t, r0(t)) +H∗(t, r0(t), w(t, r0(t)) + ε, ψx(t, r0(t)), )− η

≥ η − η = 0.

We recall that H∗(t, r0(t), v, p) = H(t, r0(t)
+, v, p).

The point (t, x) = (t,−r0(t) − δ) is handled in the same manner. Our claim
follows. �
Remark 2.12. The assumption that v + ε is a strict supersolution at infinity is
technical only for the sake of dealing with unbounded domain.

We are now ready for the proof of our main result. Let us suppose that a
subsolution u and a supersolution v satisfy the assumptions. By Proposition 2.9, for
any positive ε, v+ε is a strict supersolution; moreover v+ε is a strict supersolution
at infinity. Since v+ ε is uniformly continuous over R, there is a δ0(ε) such that for
all δ ∈ (0, δ0(ε)) we have vδ(0, x) + ε > u(0, x). By Lemma 2.10, u is a subsolution
to (2.4), while due to Lemma 2.11 vδ + ε is a supersolution to the same equation,
possibly for a smaller δ. Since Hδ is strictly increasing with respect to u, we may
apply the classical comparison principle to conclude that

u(t, x) ≤ vδ(t, x) + ε

for all t ∈ [0, T ]. Since δ0(ε) goes to zero when ε → 0 and vδ + ε converges to v, we
conclude that

u(t, x) ≤ v(t, x) for all t ∈ [0, T ],

as desired. �
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We notice that our comparison principle improves the uniqueness result of [8,
Theorem 1.1], because there we assumed an unnecessary structure of our super-
and subsolutions. Here they are removed, but we restrict the behavior of super-
and subsolutions at infinity. However, the complete analysis of this issue will be
presented elsewhere.

It would be natural to ask the question whether we can repeat the argument
when the supersolution is just bounded uniformly continuous and the subsolution
is piecewise C1 and in addition is a properly defined subsolution at infinity. Unfor-
tunately, there is no obvious answer to this question in sight. Roughly speaking,
the flat part of H plays a special role so that we cannot freely trade properties of
supersolutions for properties of subsolutions.
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