Bounded turning circles are weak-quasicircles
HTML articles powered by AMS MathViewer
- by Daniel Meyer
- Proc. Amer. Math. Soc. 139 (2011), 1751-1761
- DOI: https://doi.org/10.1090/S0002-9939-2010-10634-2
- Published electronically: October 20, 2010
- PDF | Request permission
Abstract:
We show that a metric Jordan curve $\Gamma$ is bounded turning if and only if there exists a weak-quasisymmetric homeomorphism $\varphi \colon \mathsf {S}^1 \to \Gamma$.References
- F. Alt and G. Beer, Der $n$-Gittersatz in Bogen, Ergebisse math. Koll. 6 (1935), 7.
- A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142. MR 86869, DOI 10.1007/BF02392360
- Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291–301. MR 154978, DOI 10.1007/BF02391816
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- D. A. Herron and D. Meyer, Quasicircles and bounded turning circles modulo bi-Lipschitz maps, to appear in Rev. Mat. Iberoamericana.
- Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 103 (1930), no. 1, 466–501 (German). MR 1512632, DOI 10.1007/BF01455705
- I. J. Schoenberg, On metric arcs of vanishing Menger curvature, Ann. of Math. (2) 41 (1940), 715–726. MR 2903, DOI 10.2307/1968849
- P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), no. 1, 97–114. MR 595180, DOI 10.5186/aasfm.1980.0531
- Jussi Väisälä, Dividing an arc to subarcs with equal chords, Colloq. Math. 46 (1982), no. 2, 203–204. MR 678135, DOI 10.4064/cm-46-2-203-204
Bibliographic Information
- Daniel Meyer
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014 University of Helsinki, Finland
- MR Author ID: 700302
- ORCID: 0000-0003-1881-8137
- Email: dmeyermail@gmail.com
- Received by editor(s): March 30, 2010
- Received by editor(s) in revised form: May 22, 2010
- Published electronically: October 20, 2010
- Additional Notes: The author’s research was supported by the Academy of Finland, projects SA-134757 and SA-118634
- Communicated by: Mario Bonk
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1751-1761
- MSC (2010): Primary 30C65; Secondary 51F99
- DOI: https://doi.org/10.1090/S0002-9939-2010-10634-2
- MathSciNet review: 2763763