Maximal univalent disks of real rational functions and Hermite-Biehler polynomials
HTML articles powered by AMS MathViewer
- by Vladimir P. Kostov, Boris Shapiro and Mikhail Tyaglov
- Proc. Amer. Math. Soc. 139 (2011), 1625-1635
- DOI: https://doi.org/10.1090/S0002-9939-2010-10778-5
- Published electronically: November 4, 2010
- PDF | Request permission
Abstract:
The well-known Hermite-Biehler theorem claims that a univariate monic polynomial $s$ of degree $k$ has all roots in the open upper half-plane if and only if $s=p+iq$, where $p$ and $q$ are real polynomials of degree $k$ and $k-1$ respectively with all real, simple and interlacing roots, and $q$ has a negative leading coefficient. Considering roots of $p$ as cyclically ordered on $\mathbb {R}P^1$ we show that the open disk in $\mathbb {C} P^1$ having a pair of consecutive roots of $p$ as its diameter is the maximal univalent disk for the function $R=\frac {q}{p}$. This solves a special case of the so-called Hermite-Biehler problem.References
- Jean-Pierre Dedieu, Obreschkoff’s theorem revisited: what convex sets are contained in the set of hyperbolic polynomials?, J. Pure Appl. Algebra 81 (1992), no. 3, 269–278. MR 1179101, DOI 10.1016/0022-4049(92)90060-S
- Karl Dilcher and Kenneth B. Stolarsky, Zeros of the Wronskian of a polynomial, J. Math. Anal. Appl. 162 (1991), no. 2, 430–451. MR 1137630, DOI 10.1016/0022-247X(91)90160-2
- A. Eremenko and A. Gabrielov, Degrees of real Wronski maps, Discrete Comput. Geom. 28 (2002), no. 3, 331–347. MR 1923956, DOI 10.1007/s00454-002-0735-x
- Alexandre Eremenko and Andrei Gabrielov, The Wronski map and Grassmannians of real codimension 2 subspaces, Comput. Methods Funct. Theory 1 (2001), no. 1, [On table of contents: 2002], 1–25. MR 1931599, DOI 10.1007/BF03320973
- S. Fisk, Polynomials, roots, and interlacing, arXiv:math/0612833.
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407, DOI 10.1007/978-1-4613-8652-0
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972
- Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551. MR 29999, DOI 10.1090/S0002-9904-1949-09241-8
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- Saeed Zakeri, On critical points of proper holomorphic maps on the unit disk, Bull. London Math. Soc. 30 (1998), no. 1, 62–66. MR 1479037, DOI 10.1112/S0024609397003706
Bibliographic Information
- Vladimir P. Kostov
- Affiliation: Laboratoire de Mathématiques, Université de Nice, Parc Valrose, 06108 Nice Cedex 2, France
- Email: kostov@unice.fr
- Boris Shapiro
- Affiliation: Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
- MR Author ID: 212628
- Email: shapiro@math.su.se
- Mikhail Tyaglov
- Affiliation: Institut für Mathematik, MA 4-5 Technische Universität Berlin, D-10623 Berlin, Germany
- Email: tyaglov@math.tu-berlin.de
- Received by editor(s): May 4, 2010
- Published electronically: November 4, 2010
- Additional Notes: The third author was supported by the Sofja Kovalevskaja Research Prize of the Alexander von Humboldt Foundation.
- Communicated by: Ken Ono
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 139 (2011), 1625-1635
- MSC (2010): Primary 26C05; Secondary 30C15
- DOI: https://doi.org/10.1090/S0002-9939-2010-10778-5
- MathSciNet review: 2763752