## Maximal univalent disks of real rational functions and Hermite-Biehler polynomials

HTML articles powered by AMS MathViewer

- by Vladimir P. Kostov, Boris Shapiro and Mikhail Tyaglov PDF
- Proc. Amer. Math. Soc.
**139**(2011), 1625-1635 Request permission

## Abstract:

The well-known Hermite-Biehler theorem claims that a univariate monic polynomial $s$ of degree $k$ has all roots in the open upper half-plane if and only if $s=p+iq$, where $p$ and $q$ are real polynomials of degree $k$ and $k-1$ respectively with all real, simple and interlacing roots, and $q$ has a negative leading coefficient. Considering roots of $p$ as cyclically ordered on $\mathbb {R}P^1$ we show that the open disk in $\mathbb {C} P^1$ having a pair of consecutive roots of $p$ as its diameter is the maximal univalent disk for the function $R=\frac {q}{p}$. This solves a special case of the so-called Hermite-Biehler problem.## References

- Jean-Pierre Dedieu,
*Obreschkoff’s theorem revisited: what convex sets are contained in the set of hyperbolic polynomials?*, J. Pure Appl. Algebra**81**(1992), no. 3, 269–278. MR**1179101**, DOI 10.1016/0022-4049(92)90060-S - Karl Dilcher and Kenneth B. Stolarsky,
*Zeros of the Wronskian of a polynomial*, J. Math. Anal. Appl.**162**(1991), no. 2, 430–451. MR**1137630**, DOI 10.1016/0022-247X(91)90160-2 - A. Eremenko and A. Gabrielov,
*Degrees of real Wronski maps*, Discrete Comput. Geom.**28**(2002), no. 3, 331–347. MR**1923956**, DOI 10.1007/s00454-002-0735-x - Alexandre Eremenko and Andrei Gabrielov,
*The Wronski map and Grassmannians of real codimension 2 subspaces*, Comput. Methods Funct. Theory**1**(2001), no. 1, [On table of contents: 2002], 1–25. MR**1931599**, DOI 10.1007/BF03320973 - S. Fisk, Polynomials, roots, and interlacing, arXiv:math/0612833.
- Olli Lehto,
*Univalent functions and Teichmüller spaces*, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR**867407**, DOI 10.1007/978-1-4613-8652-0 - Morris Marden,
*Geometry of polynomials*, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR**0225972** - Zeev Nehari,
*The Schwarzian derivative and schlicht functions*, Bull. Amer. Math. Soc.**55**(1949), 545–551. MR**29999**, DOI 10.1090/S0002-9904-1949-09241-8 - Q. I. Rahman and G. Schmeisser,
*Analytic theory of polynomials*, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR**1954841** - Saeed Zakeri,
*On critical points of proper holomorphic maps on the unit disk*, Bull. London Math. Soc.**30**(1998), no. 1, 62–66. MR**1479037**, DOI 10.1112/S0024609397003706

## Additional Information

**Vladimir P. Kostov**- Affiliation: Laboratoire de Mathématiques, Université de Nice, Parc Valrose, 06108 Nice Cedex 2, France
- Email: kostov@unice.fr
**Boris Shapiro**- Affiliation: Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
- MR Author ID: 212628
- Email: shapiro@math.su.se
**Mikhail Tyaglov**- Affiliation: Institut für Mathematik, MA 4-5 Technische Universität Berlin, D-10623 Berlin, Germany
- Email: tyaglov@math.tu-berlin.de
- Received by editor(s): May 4, 2010
- Published electronically: November 4, 2010
- Additional Notes: The third author was supported by the Sofja Kovalevskaja Research Prize of the Alexander von Humboldt Foundation.
- Communicated by: Ken Ono
- © Copyright 2010 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**139**(2011), 1625-1635 - MSC (2010): Primary 26C05; Secondary 30C15
- DOI: https://doi.org/10.1090/S0002-9939-2010-10778-5
- MathSciNet review: 2763752