On the connectivity of the escaping set for complex exponential Misiurewicz parameters
HTML articles powered by AMS MathViewer
- by Xavier Jarque
- Proc. Amer. Math. Soc. 139 (2011), 2057-2065
- DOI: https://doi.org/10.1090/S0002-9939-2010-10611-1
- Published electronically: November 18, 2010
- PDF | Request permission
Abstract:
Let $E_{\lambda }(z)=\lambda \textrm {exp}(z), \lambda \in \mathbb C$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at $0$ (and no critical values). For a fixed $\lambda$, the set of points in $\mathbb C$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $E_{\lambda }$ with $\lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.References
- Krzysztof Barański, Trees and hairs for some hyperbolic entire maps of finite order, Math. Z. 257 (2007), no. 1, 33–59. MR 2318569, DOI 10.1007/s00209-007-0114-7
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 8, 1517–1534. MR 1721835, DOI 10.1142/S0218127499001061
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. MR 1257026, DOI 10.1017/S0143385700007586
- Robert L. Devaney and Xavier Jarque, Misiurewicz points for complex exponentials, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 7 (1997), no. 7, 1599–1615. MR 1486945, DOI 10.1142/S0218127497001242
- Robert L. Devaney, Xavier Jarque, and Mónica Moreno Rocha, Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 10, 3281–3293. MR 2192642, DOI 10.1142/S0218127405013885
- Robert L. Devaney and MichałKrych, Dynamics of $\textrm {exp}(z)$, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 35–52. MR 758892, DOI 10.1017/S014338570000225X
- A. È. Erëmenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345. MR 1102727
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102
- Mihaljević-Brand, H. Orbifolds of subhyperbolic transcendental maps, arXiv:0907.5398.
- Lasse Rempe, The escaping set of the exponential, Ergodic Theory Dynam. Systems 30 (2010), no. 2, 595–599. MR 2599894, DOI 10.1017/S014338570900008X
- Lasse Rempe, Topological dynamics of exponential maps on their escaping sets, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1939–1975. MR 2279273, DOI 10.1017/S0143385706000435
- Lasse Rempe, On nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 353–369. MR 2337482
- Lasse Rempe, Rigidity of escaping dynamics for transcendental entire functions, Acta Math. 203 (2009), no. 2, 235–267. MR 2570071, DOI 10.1007/s11511-009-0042-y
- Rottenfusser, G., Rückert, J., Rempe, L. and Schleicher, D. Dynamics rays of bounded-type entire functions, Annals of Mathematics, to appear.
- Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380–400. MR 1956142, DOI 10.1112/S0024610702003897
- Dierk Schleicher and Johannes Zimmer, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 2, 327–354. MR 1996442
- R. E. Lee DeVille, Itineraries of entire functions, J. Differ. Equations Appl. 7 (2001), no. 2, 193–214. MR 1923620, DOI 10.1080/10236190108808269
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095
Bibliographic Information
- Xavier Jarque
- Affiliation: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran via 585, 08007 Barcelona, Catalunya, Spain
- Address at time of publication: Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Catalunya, Spain
- Email: xavier.jarque@bu.edu
- Received by editor(s): August 13, 2009
- Received by editor(s) in revised form: December 11, 2009, and May 31, 2010
- Published electronically: November 18, 2010
- Additional Notes: The author is partially supported by grants 2009SGR–792, MTM2006–05849 and MTM–2008–01486 Consolider (including a FEDER contribution).
- Communicated by: Bryna R. Kra
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 2057-2065
- MSC (2010): Primary 37F50; Secondary 32A15, 37B10
- DOI: https://doi.org/10.1090/S0002-9939-2010-10611-1
- MathSciNet review: 2775383