On fields of definition of torsion points of elliptic curves with complex multiplication
HTML articles powered by AMS MathViewer
- by Luis Dieulefait, Enrique González-Jiménez and Jorge Jiménez Urroz
- Proc. Amer. Math. Soc. 139 (2011), 1961-1969
- DOI: https://doi.org/10.1090/S0002-9939-2010-10621-4
- Published electronically: November 9, 2010
- PDF | Request permission
Abstract:
For any elliptic curve $E$ defined over the rationals with complex multiplication (CM) and for every prime $p$, we describe the image of the mod $p$ Galois representation attached to $E$. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definition of the CM.References
- J. J. Cannon, W. Bosma (eds.), Handbook of Magma Functions, Edition 2.15 (2008).
- Yasutsugu Fujita, Torsion subgroups of elliptic curves with non-cyclic torsion over $\Bbb Q$ in elementary abelian 2-extensions of $\Bbb Q$, Acta Arith. 115 (2004), no. 1, 29–45. MR 2102804, DOI 10.4064/aa115-1-3
- Soonhak Kwon, Torsion subgroups of elliptic curves over quadratic extensions, J. Number Theory 62 (1997), no. 1, 144–162. MR 1430007, DOI 10.1006/jnth.1997.2036
- Derong Qiu and Xianke Zhang, Elliptic curves and their torsion subgroups over number fields of type $(2,2,\dots ,2)$, Sci. China Ser. A 44 (2001), no. 2, 159–167. MR 1824316, DOI 10.1007/BF02874418
- Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331 (French). MR 387283, DOI 10.1007/BF01405086
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- W. Stein et al., Sage: Open Source Mathematical Software (Version 3.4), The Sage Group, 2009, http://www.sagemath.org.
Bibliographic Information
- Luis Dieulefait
- Affiliation: Departament d’Algebra i Geometria, Universitat de Barcelona, G. V. de les Corts Catalanes 585, 08007 Barcelona, Spain
- MR Author ID: 671876
- Email: ldieulefait@ub.edu
- Enrique González-Jiménez
- Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), 28049 Madrid, Spain
- MR Author ID: 703386
- Email: enrique.gonzalez.jimenez@uam.es
- Jorge Jiménez Urroz
- Affiliation: Departament de Matemàtica Aplicada IV, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
- Email: jjimenez@ma4.upc.edu
- Received by editor(s): March 16, 2010
- Received by editor(s) in revised form: June 2, 2010
- Published electronically: November 9, 2010
- Additional Notes: The authors were partially supported by the grants MTM2006-04895 (Ministerio de Educación y Ciencia of Spain), MTM2009-07291 (Ministerio de Ciencia e Innovación of Spain), CCG08-UAM/ESP-3906 (Universidad Autónoma de Madrid and Comunidad de Madrid), and MTM2009-11068 (Ministerio de Ciencia e Innovación of Spain) respectively.
- Communicated by: Ken Ono
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1961-1969
- MSC (2010): Primary 11G05; Secondary 11F80
- DOI: https://doi.org/10.1090/S0002-9939-2010-10621-4
- MathSciNet review: 2775372