Relatively pointwise recurrent graph map
HTML articles powered by AMS MathViewer
- by Hattab Hawete
- Proc. Amer. Math. Soc. 139 (2011), 2087-2092
- DOI: https://doi.org/10.1090/S0002-9939-2010-10622-6
- Published electronically: November 9, 2010
- PDF | Request permission
Abstract:
Let $f$ be a self-continuous map of a graph $G$. Let $P(f)$ and $R(f)$ denote the sets of periodic points and recurrent points respectively. We say that the map $f$ is relatively recurrent if $\overline {R(f)} = G$. In this paper, it is shown that $f$ is relatively recurrent if and only if one of the following statements holds:
[(a)] $G$ is a circle and $f$ is a homeomorphism topologically conjugate to an irrational rotation of the unit circle $\mathbb {S}^1$;
[(b)] $\overline {P(f)} = G$.
Part (b) extends a result of Blokh.
References
- Francisco Balibrea, Roman Hric, and L’ubomír Snoha, Minimal sets on graphs and dendrites, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 7, 1721–1725. Dynamical systems and functional equations (Murcia, 2000). MR 2015622, DOI 10.1142/S0218127403007576
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. With an addendum by Jurgen Moser. MR 0209095
- A. M. Blokh, The connection between entropy and transitivity for one-dimensional mappings, Uspekhi Mat. Nauk 42 (1987), no. 5(257), 209–210 (Russian). MR 928783
- D. B. A. Epstein, Pointwise periodic homeomorphisms, Proc. London Math. Soc. (3) 42 (1981), no. 3, 415–460. MR 614729, DOI 10.1112/plms/s3-42.3.415
- H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981. M. B. Porter Lectures. MR 603625
- W. H. Gottschalk, Powers of homeomorphisms with almost periodic properties, Bull. Amer. Math. Soc. 50 (1944), 222–227. MR 9850, DOI 10.1090/S0002-9904-1944-08115-9
- Boris Hasselblatt and Anatole Katok, A first course in dynamics, Cambridge University Press, New York, 2003. With a panorama of recent developments. MR 1995704, DOI 10.1017/CBO9780511998188
- Alejandro Illanes, A characterization of dendrites with the periodic-recurrent property, Proceedings of the 13th Summer Conference on General Topology and its Applications (México City, 1998), 1998, pp. 221–235 (2000). MR 1803250
- Jie-Hua Mai and Song Shao, $\overline R=R\cup \overline P$ for graph maps, J. Math. Anal. Appl. 350 (2009), no. 1, 9–11. MR 2476886, DOI 10.1016/j.jmaa.2008.09.006
- Jie-Hua Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4125–4136. MR 1990578, DOI 10.1090/S0002-9947-03-03339-7
- Jie-Hua Mai, Pointwise-recurrent graph maps, Ergodic Theory Dynam. Systems 25 (2005), no. 2, 629–637. MR 2129113, DOI 10.1017/S0143385704000720
- Deane Montgomery, Pointwise Periodic Homeomorphisms, Amer. J. Math. 59 (1937), no. 1, 118–120. MR 1507223, DOI 10.2307/2371565
- Zbigniew Nitecki, Maps of the interval with closed periodic set, Proc. Amer. Math. Soc. 85 (1982), no. 3, 451–456. MR 656122, DOI 10.1090/S0002-9939-1982-0656122-2
- Lex G. Oversteegen and E. D. Tymchatyn, Recurrent homeomorphisms on $\textbf {R}^2$ are periodic, Proc. Amer. Math. Soc. 110 (1990), no. 4, 1083–1088. MR 1037216, DOI 10.1090/S0002-9939-1990-1037216-3
- Norris Weaver, Pointwise periodic homeomorphisms of continua, Ann. of Math. (2) 95 (1972), 83–85. MR 293600, DOI 10.2307/1970855
Bibliographic Information
- Hattab Hawete
- Affiliation: Institut Supérieur d’Informatique et du Multimedia, Route de Tunis, Km 10, B.P. 242, Sfax 3021, Tunisia
- Email: hattab.hawete@yahoo.fr
- Received by editor(s): April 10, 2010
- Received by editor(s) in revised form: June 2, 2010
- Published electronically: November 9, 2010
- Communicated by: Yingfei Yi
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 2087-2092
- MSC (2010): Primary 37B20, 37E25
- DOI: https://doi.org/10.1090/S0002-9939-2010-10622-6
- MathSciNet review: 2775386