The linear dual of the derived category of a scheme
HTML articles powered by AMS MathViewer
- by Carlos Sancho de Salas and Fernando Sancho de Salas
- Proc. Amer. Math. Soc. 139 (2011), 1897-1907
- DOI: https://doi.org/10.1090/S0002-9939-2011-10895-5
- Published electronically: January 21, 2011
- PDF | Request permission
Abstract:
Let $X\to S$ be a projective morphism of schemes. We study the category $D(X/S)^*$ of $S$-linear exact functors $D(X)\to D(S)$, and we study the Fourier transform $D(X)\to D(X/S)^*$.References
- Matthew Robert Ballard, Derived categories of sheaves of quasi-projective schemes, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–University of Washington. MR 2712236
- —, Equivalences of derived categories of sheaves on quasi-projective schemes, arXiv:0905.3148v2 [math.AG].
- A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800, DOI 10.17323/1609-4514-2003-3-1-1-36
- Daniel Hernández Ruipérez, Ana Cristina López Martín, and Fernando Sancho de Salas, Relative integral functors for singular fibrations and singular partners, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 3, 597–625. MR 2505443, DOI 10.4171/JEMS/162
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- D. O. Orlov, Equivalences of derived categories and $K3$ surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381. Algebraic geometry, 7. MR 1465519, DOI 10.1007/BF02399195
- Dmitri D. Orlov and Valery A. Lunts, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), 853–908.
- Raphaël Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008), no. 2, 193–256. MR 2434186, DOI 10.1017/is007011012jkt010
Bibliographic Information
- Carlos Sancho de Salas
- Affiliation: Department of Mathematics, University of Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
- Email: fsancho@usal.es
- Fernando Sancho de Salas
- Affiliation: Department of Mathematics, University of Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
- MR Author ID: 621464
- ORCID: 0000-0001-8915-2438
- Email: mplu@usal.es
- Received by editor(s): January 27, 2010
- Published electronically: January 21, 2011
- Additional Notes: This work was supported by research projects MTM2009-07289 (MEC) and SA001A07 (JCYL)
- Communicated by: Lev Borisov
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 1897-1907
- MSC (2010): Primary 14F05; Secondary 18E30
- DOI: https://doi.org/10.1090/S0002-9939-2011-10895-5
- MathSciNet review: 2775366