Some remarks on symplectic injective stability

Authors:
Rabeya Basu, Pratyusha Chattopadhyay and Ravi A. Rao

Journal:
Proc. Amer. Math. Soc. **139** (2011), 2317-2325

MSC (2000):
Primary 13C10, 13H05, 19B14, 19B99, 55R50

DOI:
https://doi.org/10.1090/S0002-9939-2010-10654-8

Published electronically:
December 16, 2010

MathSciNet review:
2784796

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if is an affine algebra of odd dimension over an infinite field of cohomological dimension at most one, with , and with , then Um . As a consequence it is shown that if is a non-singular affine algebra of dimension over an infinite field of cohomological dimension at most one, and , and , then . This result is a partial analogue for even-dimensional algebras of the one obtained by Basu and Rao for odd-dimensional algebras earlier.

**1.**Hyman Bass,*Algebraic 𝐾-theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**0249491****2.**H. Bass, J. Milnor, and J.-P. Serre,*Solution of the congruence subgroup problem for 𝑆𝐿_{𝑛}(𝑛≥3) and 𝑆𝑝_{2𝑛}(𝑛≥2)*, Inst. Hautes Études Sci. Publ. Math.**33**(1967), 59–137. MR**244257****3.**H. Bass,*𝐾-theory and stable algebra*, Inst. Hautes Études Sci. Publ. Math.**22**(1964), 5–60. MR**174604****4.**Rabeya Basu and Ravi A. Rao,*Injective stability for 𝐾₁ of classical modules*, J. Algebra**323**(2010), no. 4, 867–877. MR**2578583**, https://doi.org/10.1016/j.jalgebra.2009.12.012**5.**Ravi A. Rao, Rabeya Basu, and Selby Jose,*Injective stability for 𝐾₁ of the orthogonal group*, J. Algebra**323**(2010), no. 2, 393–396. MR**2564846**, https://doi.org/10.1016/j.jalgebra.2009.09.022**6.**P. Chattopadhyay, R.A. Rao, Elementary symplectic orbits and improved -stability, to appear in Journal of -theory, doi:10.1017/is010002021jkt109, published online by Cambridge University Press, 10 June 2010.**7.**Anuradha S. Garge and Ravi A. Rao,*A nice group structure on the orbit space of unimodular rows*, 𝐾-Theory**38**(2008), no. 2, 113–133. MR**2366558**, https://doi.org/10.1007/s10977-007-9011-4**8.**Jean Fasel, Stably free modules over smooth affine threefolds, arXiv:0911.3495v2 [math.AC], to appear in Duke Mathematical Journal.**9.**Selby Jose and Ravi A. Rao,*A structure theorem for the elementary unimodular vector group*, Trans. Amer. Math. Soc.**358**(2006), no. 7, 3097–3112. MR**2216260**, https://doi.org/10.1090/S0002-9947-05-03794-3**10.**Selby Jose, Ravi A. Rao, A fundamental property of Suslin matrices, Journal of -theory: -theory and its Applications to Algebra, Geometry, and Topology 5 (2010), no. 3, 407-436.**11.**Ravi A. Rao and Selby Jose,*A group structure on squares*, Proc. Amer. Math. Soc.**136**(2008), no. 4, 1181–1191. MR**2367092**, https://doi.org/10.1090/S0002-9939-07-09065-X**12.**Wilberd van der Kallen,*A group structure on certain orbit sets of unimodular rows*, J. Algebra**82**(1983), no. 2, 363–397. MR**704762**, https://doi.org/10.1016/0021-8693(83)90158-8**13.**Wilberd van der Kallen,*A module structure on certain orbit sets of unimodular rows*, J. Pure Appl. Algebra**57**(1989), no. 3, 281–316. MR**987316**, https://doi.org/10.1016/0022-4049(89)90035-2**14.**Ravi A. Rao and Wilberd van der Kallen,*Improved stability for 𝑆𝐾₁ and 𝑊𝑀𝑆_{𝑑} of a non-singular affine algebra*, Astérisque**226**(1994), 11, 411–420. 𝐾-theory (Strasbourg, 1992). MR**1317126****15.**Ravi A. Rao,*A stably elementary homotopy*, Proc. Amer. Math. Soc.**137**(2009), no. 11, 3637–3645. MR**2529870**, https://doi.org/10.1090/S0002-9939-09-09949-3**16.**Ravi A. Rao, Rabeya Basu, and Selby Jose,*Injective stability for 𝐾₁ of the orthogonal group*, J. Algebra**323**(2010), no. 2, 393–396. MR**2564846**, https://doi.org/10.1016/j.jalgebra.2009.09.022**17.**L. N. Vaseršteĭn and A. A. Suslin,*Serre’s problem on projective modules over polynomial rings, and algebraic 𝐾-theory*, Izv. Akad. Nauk SSSR Ser. Mat.**40**(1976), no. 5, 993–1054, 1199 (Russian). MR**0447245****18.**A. A. Suslin,*Stably free modules*, Mat. Sb. (N.S.)**102(144)**(1977), no. 4, 537–550, 632 (Russian). MR**0441949****19.**A. A. Suslin,*The structure of the special linear group over rings of polynomials*, Izv. Akad. Nauk SSSR Ser. Mat.**41**(1977), no. 2, 235–252, 477 (Russian). MR**0472792****20.**A. A. Suslin,*Mennicke symbols and their applications in the 𝐾-theory of fields*, Algebraic 𝐾-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 334–356. MR**689382****21.**A. A. Suslin,*The cancellation problem for projective modules, and related questions*, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 323–330 (Russian). MR**562623****22.**A. A. Suslin,*Cancellation for affine varieties*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**114**(1982), 187–195, 222 (Russian). Modules and algebraic groups. MR**669571****23.**L. N. Vaseršteĭn,*On the stabilization of the general linear group over a ring*, Math. USSR-Sb.**8**(1969), 383–400. MR**0267009****24.**L. N. Vaseršteĭn,*Stabilization of unitary and orthogonal groups over a ring with involution*, Mat. Sb. (N.S.)**81 (123)**(1970), 328–351 (Russian). MR**0269722****25.**Leonid N. Vaserstein,*Operations on orbits of unimodular vectors*, J. Algebra**100**(1986), no. 2, 456–461. MR**840588**, https://doi.org/10.1016/0021-8693(86)90088-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13C10,
13H05,
19B14,
19B99,
55R50

Retrieve articles in all journals with MSC (2000): 13C10, 13H05, 19B14, 19B99, 55R50

Additional Information

**Rabeya Basu**

Affiliation:
Indian Institute of Science Education and Research, Kolkata 741 252, India

Email:
rbasu@iiserkol.ac.in

**Pratyusha Chattopadhyay**

Affiliation:
Institute of Mathematical Sciences, Chennai 600 113, India

Email:
pratyusha@imsc.res.in

**Ravi A. Rao**

Affiliation:
Tata Institute of Fundamental Research, Mumbai 400 005, India

Email:
ravi@math.tifr.res.in

DOI:
https://doi.org/10.1090/S0002-9939-2010-10654-8

Keywords:
Unimodular rows,
elementary symplectic group

Received by editor(s):
January 9, 2010

Received by editor(s) in revised form:
January 12, 2010, June 9, 2010, and June 18, 2010

Published electronically:
December 16, 2010

Communicated by:
Martin Lorenz

Article copyright:
© Copyright 2010
American Mathematical Society