On Demazure crystals for
Authors:
Rebecca L. Jayne and Kailash C. Misra
Journal:
Proc. Amer. Math. Soc. 139 (2011), 2343-2356
MSC (2010):
Primary 17B37, 17B10; Secondary 17B67
DOI:
https://doi.org/10.1090/S0002-9939-2010-10663-9
Published electronically:
December 7, 2010
MathSciNet review:
2784799
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that there exist suitable sequences and
of Weyl group elements for a given perfect crystal of level
such that the path realizations of the Demazure crystals
and
for the quantum affine algebra
have tensor-product-like structures with mixing index
.
- 1. Georgia Benkart, Igor Frenkel, Seok-Jin Kang, and Hyeonmi Lee, Level 1 perfect crystals and path realizations of basic representations at 𝑞=0, Int. Math. Res. Not. , posted on (2006), Art. ID 10312, 28. MR 2272099, https://doi.org/10.1155/IMRN/2006/10312
- 2. Ghislain Fourier, Masato Okado, and Anne Schilling, Kirillov-Reshetikhin crystals for nonexceptional types, Adv. Math. 222 (2009), no. 3, 1080–1116. MR 2553378, https://doi.org/10.1016/j.aim.2009.05.020
- 3. Ghislain Fourier, Masato Okado, and Anne Schilling, Perfectness of Kirillov-Reshetikhin crystals for nonexceptional types, Quantum affine algebras, extended affine Lie algebras, and their applications, Contemp. Math., vol. 506, Amer. Math. Soc., Providence, RI, 2010, pp. 127–143. MR 2642564, https://doi.org/10.1090/conm/506/09938
- 4. Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
- 5. Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Affine crystals and vertex models, Infinite analysis, Part A, B (Kyoto, 1991) Adv. Ser. Math. Phys., vol. 16, World Sci. Publ., River Edge, NJ, 1992, pp. 449–484. MR 1187560, https://doi.org/10.1142/s0217751x92003896
- 6. Seok-Jin Kang, Masaki Kashiwara, Kailash C. Misra, Tetsuji Miwa, Toshiki Nakashima, and Atsushi Nakayashiki, Perfect crystals of quantum affine Lie algebras, Duke Math. J. 68 (1992), no. 3, 499–607. MR 1194953, https://doi.org/10.1215/S0012-7094-92-06821-9
- 7. Seok-Jin Kang, Masaki Kashiwara, and Kailash C. Misra, Crystal bases of Verma modules for quantum affine Lie algebras, Compositio Math. 92 (1994), no. 3, 299–325. MR 1286129
- 8. Masaki Kashiwara, Crystalizing the 𝑞-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260. MR 1090425
- 9. M. Kashiwara, K. C. Misra, M. Okado, and D. Yamada, Perfect crystals for 𝑈_{𝑞}(𝐷⁽³⁾₄), J. Algebra 317 (2007), no. 1, 392–423. MR 2360156, https://doi.org/10.1016/j.jalgebra.2007.02.021
- 10. M. Kashiwara, On crystal bases of the 𝑄-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516. MR 1115118, https://doi.org/10.1215/S0012-7094-91-06321-0
- 11. Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858. MR 1240605, https://doi.org/10.1215/S0012-7094-93-07131-1
- 12. Atsuo Kuniba, Kailash C. Misra, Masato Okado, and Jun Uchiyama, Demazure modules and perfect crystals, Comm. Math. Phys. 192 (1998), no. 3, 555–567. MR 1620507, https://doi.org/10.1007/s002200050309
- 13. Atsuo Kuniba, Kailash C. Misra, Masato Okado, Taichiro Takagi, and Jun Uchiyama, Crystals for Demazure modules of classical affine Lie algebras, J. Algebra 208 (1998), no. 1, 185–215. MR 1643999, https://doi.org/10.1006/jabr.1998.7503
- 14. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, https://doi.org/10.1090/S0894-0347-1990-1035415-6
- 15. George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- 16. Kailash C. Misra, On Demazure crystals for 𝑈_{𝑞}(𝐷⁽³⁾₄), Infinite-dimensional aspects of representation theory and applications, Contemp. Math., vol. 392, Amer. Math. Soc., Providence, RI, 2005, pp. 83–93. MR 2189872, https://doi.org/10.1090/conm/392/07355
- 17. Kailash C. Misra, Mahathir Mohamad, and Masato Okado, Zero action on perfect crystals for 𝑈_{𝑞}(𝐺⁽¹⁾₂), SIGMA Symmetry Integrability Geom. Methods Appl. 6 (2010), Paper 022, 12. MR 2602215, https://doi.org/10.3842/SIGMA.2010.022
- 18. Kailash C. Misra and Vicky Williams, Combinatorics of quantum affine Lie algebra representations, Kac-Moody Lie algebras and related topics, Contemp. Math., vol. 343, Amer. Math. Soc., Providence, RI, 2004, pp. 167–189. MR 2056685, https://doi.org/10.1090/conm/343/06189
- 19. Shigenori Yamane, Perfect crystals of 𝑈_{𝑞}(𝐺⁽¹⁾₂), J. Algebra 210 (1998), no. 2, 440–486. MR 1662347, https://doi.org/10.1006/jabr.1998.7597
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B37, 17B10, 17B67
Retrieve articles in all journals with MSC (2010): 17B37, 17B10, 17B67
Additional Information
Rebecca L. Jayne
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205
Email:
rljayne@unity.ncsu.edu
Kailash C. Misra
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205
Email:
misra@math.ncsu.edu
DOI:
https://doi.org/10.1090/S0002-9939-2010-10663-9
Received by editor(s):
March 31, 2010
Received by editor(s) in revised form:
June 11, 2010, and June 23, 2010
Published electronically:
December 7, 2010
Additional Notes:
This work was partially supported by NSA grant H98230-08-1-0080.
Communicated by:
Gail R. Letzter
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.