Circle packing coordinates for the moduli space of tori
Author:
G. Brock Williams
Journal:
Proc. Amer. Math. Soc. 139 (2011), 2577-2585
MSC (2010):
Primary 52C26, 30F60
DOI:
https://doi.org/10.1090/S0002-9939-2010-10690-1
Published electronically:
December 17, 2010
MathSciNet review:
2784827
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We develop a set of natural coordinates on the moduli space of Euclidean tori using the combinatorial structure of circle packings. Surfaces with rational coordinates support Brooks packings, while surfaces with rational
and irrational
coordinates support generalized Brooks packings with periodic singularities.
- 1. E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 81 (123) (1970), 445–478 (Russian). MR 0259734
- 2. Roger W. Barnard and G. Brock Williams, Combinatorial excursions in moduli space, Pacific J. Math. 205 (2002), no. 1, 3–30. MR 1921075, https://doi.org/10.2140/pjm.2002.205.3
- 3. Alan F. Beardon and Kenneth Stephenson, The uniformization theorem for circle packings, Indiana Univ. Math. J. 39 (1990), no. 4, 1383–1425. MR 1087197, https://doi.org/10.1512/iumj.1990.39.39062
- 4. Philip L. Bowers and Kenneth Stephenson, The set of circle packing points in the Teichmüller space of a surface of finite conformal type is dense, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 3, 487–513. MR 1151326, https://doi.org/10.1017/S0305004100075575
- 5. Philip L. Bowers and Kenneth Stephenson, Circle packings in surfaces of finite type: an in situ approach with applications to moduli, Topology 32 (1993), no. 1, 157–183. MR 1204413, https://doi.org/10.1016/0040-9383(93)90044-V
- 6. Phillip L. Bowers and Monica K. Hurdal et al., Quasi-conformally flat mapping the human cerebellum, Medical Image Computing and Computer-Assisted Intervention (C. Taylor and A. Colchester, eds.), Lecture Notes in Computer Science, vol. 1679, Springer, 1999, pp. 279-286.
- 7. Robert Brooks, On the deformation theory of classical Schottky groups, Duke Math. J. 52 (1985), no. 4, 1009–1024. MR 816397, https://doi.org/10.1215/S0012-7094-85-05253-6
- 8. Robert Brooks, Circle packings and co-compact extensions of Kleinian groups, Invent. Math. 86 (1986), no. 3, 461–469. MR 860677, https://doi.org/10.1007/BF01389263
- 9. Robert Brooks, The continued fraction parameter in the deformation theory of classical Schottky groups, Curves, Jacobians, and abelian varieties (Amherst, MA, 1990) Contemp. Math., vol. 136, Amer. Math. Soc., Providence, RI, 1992, pp. 41–54. MR 1188193, https://doi.org/10.1090/conm/136/1188193
- 10. Peter G. Doyle and J. Laurie Snell, Random walks and electric networks, Carus Mathematical Monographs, vol. 22, Mathematical Association of America, Washington, DC, 1984. MR 920811
- 11. Tomasz Dubejko and Kenneth Stephenson, Circle packing: experiments in discrete analytic function theory, Experiment. Math. 4 (1995), no. 4, 307–348. MR 1387696
- 12. Zheng-Xu He and O. Schramm, Hyperbolic and parabolic packings, Discrete Comput. Geom. 14 (1995), no. 2, 123–149. MR 1331923, https://doi.org/10.1007/BF02570699
- 13. Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481
- 14. Gareth A. Jones and David Singerman, Complex functions, Cambridge University Press, Cambridge, 1987. An algebraic and geometric viewpoint. MR 890746
- 15. Paul Koebe, Kontaktprobleme der Konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88 (1936), 141-164.
- 16. Eric M. Murphy and Michael D. Payne, Coverage, control, and reconnaissance: A new perspective on surveillance and reconnaissance sufficiency analysis, preprint.
- 17. Georg Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Math. Ann. 84 (1921), no. 1-2, 149–160 (German). MR 1512028, https://doi.org/10.1007/BF01458701
- 18. Kenneth Stephenson, Introduction to circle packing, Cambridge University Press, Cambridge, 2005. The theory of discrete analytic functions. MR 2131318
- 19.
William Thurston, The geometry and topology of
-manifolds, Princeton University Notes, preprint.
- 20. -, The finite Riemann mapping theorem, 1985, Invited talk, An International Symposium at Purdue University on the occasion of the proof of the Bieberbach conjecture, March 1985.
- 21. G. Brock Williams, Earthquakes and circle packings, J. Anal. Math. 85 (2001), 371–396. MR 1869616, https://doi.org/10.1007/BF02788088
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52C26, 30F60
Retrieve articles in all journals with MSC (2010): 52C26, 30F60
Additional Information
G. Brock Williams
Affiliation:
Department of Mathematics, Texas Tech University, Lubbock, Texas 79409
Email:
brock.williams@ttu.edu
DOI:
https://doi.org/10.1090/S0002-9939-2010-10690-1
Keywords:
Circle packing,
moduli space
Received by editor(s):
January 18, 2010
Received by editor(s) in revised form:
July 3, 2010
Published electronically:
December 17, 2010
Communicated by:
Mario Bonk
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.