Picard-Vessiot extensions for real fields

Author:
Elżbieta Sowa

Journal:
Proc. Amer. Math. Soc. **139** (2011), 2407-2413

MSC (2010):
Primary 12H05; Secondary 12F10, 12D15

DOI:
https://doi.org/10.1090/S0002-9939-2010-10700-1

Published electronically:
December 9, 2010

MathSciNet review:
2784805

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define a notion of Picard-Vessiot extension for a homogeneous linear differential equation defined over a real differential field with a real closed field of constants . When has differential Galois group over the complexification of , we prove that a Picard-Vessiot extension for exists over .

**1.**M. F. Atiyah and I. G. Macdonald,*Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0242802****2.**A. Buium, P. J. Cassidy,*Differential algebraic geometry and differential algebraic groups: From algebraic differential equations to Diophantine geometry*, in*Selected works of Ellis Kolchin with commentary*, H. Bass, A. Buium and P.J. Cassidy, eds., American Mathematical Society, Providence, RI, 1999, pp. 567-636.**3.**Jacek Bochnak, Michel Coste, and Marie-Françoise Roy,*Real algebraic geometry*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR**1659509****4.**T. Crespo, Z. Hajto,*Introduction to Differential Galois Theory*, Cracow University of Technology Publishers, 2007.**5.**Marvin P. Epstein,*An existence theorem in the algebraic study of homogeneous linear ordinary differential equations*, Proc. Amer. Math. Soc.**6**(1955), 33–41. MR**67102**, https://doi.org/10.1090/S0002-9939-1955-0067102-6**6.**Marvin P. Epstein,*On the theory of Picard-Vessiot extensions*, Ann. of Math. (2)**62**(1955), 528–547. MR**72868**, https://doi.org/10.2307/1970078**7.**Irving Kaplansky,*An introduction to differential algebra*, Actualités Sci. Ind., No. 1251 = Publ. Inst. Math. Univ. Nancago, No. 5, Hermann, Paris, 1957. MR**0093654****8.**E. R. Kolchin,*Differential algebra and algebraic groups*, Academic Press, New York-London, 1973. Pure and Applied Mathematics, Vol. 54. MR**0568864****9.**Andy R. Magid,*Lectures on differential Galois theory*, University Lecture Series, vol. 7, American Mathematical Society, Providence, RI, 1994. MR**1301076****10.**Juan J. Morales Ruiz,*Differential Galois theory and non-integrability of Hamiltonian systems*, Progress in Mathematics, vol. 179, Birkhäuser Verlag, Basel, 1999. MR**1713573****11.**Marius van der Put and Michael F. Singer,*Galois theory of linear differential equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR**1960772****12.**Joseph Fels Ritt,*Differential algebra*, Dover Publications, Inc., New York, 1966. MR**0201431****13.**A. Seidenberg,*Contribution to the Picard-Vessiot theory of homogeneous linear differential equations*, Amer. J. Math.**78**(1956), 808–818. MR**81897**, https://doi.org/10.2307/2372470

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
12H05,
12F10,
12D15

Retrieve articles in all journals with MSC (2010): 12H05, 12F10, 12D15

Additional Information

**Elżbieta Sowa**

Affiliation:
Instytut Matematyki i Informatyki, Uniwersytet Jagielloński, ul. Łojasiewicza 6, 30-348 Kraków, Poland

Email:
elzbieta.sowa@im.uj.edu.pl

DOI:
https://doi.org/10.1090/S0002-9939-2010-10700-1

Received by editor(s):
September 17, 2009

Received by editor(s) in revised form:
March 19, 2010, and July 2, 2010

Published electronically:
December 9, 2010

Additional Notes:
This work was supported by the Polish Grant N20103831/3261

Communicated by:
Martin Lorenz

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.