Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Multi-skewed Brownian motion and diffusion in layered media
HTML articles powered by AMS MathViewer

by Jorge M. Ramirez PDF
Proc. Amer. Math. Soc. 139 (2011), 3739-3752 Request permission

Abstract:

Multi-skewed Brownian motion $B^{\alpha } = \{B^{\alpha }_t: t \geqslant 0\}$ with skewness sequence $\alpha = \{\alpha _{k}: k\in \mathbb {Z}\}$ and interface set $S= \{x_{k}: k \in \mathbb {Z}\}$ is the solution to $X_t = X_0 + B_t + \int _{\mathbb {R}} L^X(t,x) \mathrm {d} \mu (x)$ with $\mu = \sum _{k \in \mathbb {Z}}(2 \alpha _{k}-1) \delta _{x_{k}}$. We assume that $\alpha _{k} \in (0,1) \setminus \{\frac {1}{2}\}$ and that $S$ has no accumulation points. The process $B^{\alpha }$ generalizes skew Brownian motion to the case of an infinite set of interfaces. Namely, the paths of $B^{\alpha }$ behave like Brownian motion in $\mathbb {R} \smallsetminus S$, and on $B^{\alpha }_0 = x_k$, the probability of reaching $x_k+\delta$ before $x_k-\delta$ is $\alpha _k$, for any $\delta$ small enough, and $k \in \mathbb {Z}$. In this paper, a thorough analysis of the structure of $B^{\alpha }$ is undertaken, including the characterization of its infinitesimal generator and conditions for recurrence and positive recurrence. The associated Dirichlet form is used to relate $B^{\alpha }$ to a diffusion process with piecewise constant diffusion coefficient. As an application, we compute the asymptotic behavior of a diffusion process corresponding to a parabolic partial differential equation in a two-dimensional periodic layered geometry.
References
  • T. A. Appuhamillage, V. A. Bokil, E. Thomann, Edward C. Waymire, and B. D. Wood, Occupation and local times for skew Brownian motion with applications to dispersion across an interface, Annals of Applied Probability 21 (2011), no. 1, 183–214.
  • —, Solute transport across an interface: A Fickian theory for skewness in breakthrough curves, Water Resources Research 46 (2010), W07511.
  • Martin Barlow, Jim Pitman, and Marc Yor, Une extension multidimensionnelle de la loi de l’arc sinus, Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 294–314 (French). MR 1022918, DOI 10.1007/BFb0083980
  • Richard F. Bass and Zhen-Qing Chen, One-dimensional stochastic differential equations with singular and degenerate coefficients, Sankhyā 67 (2005), no. 1, 19–45. MR 2203887
  • C. Berentsen, M. Verlaan, and C. Kruijsdijk, Upscaling and reversibility of Taylor dispersion in heterogeneous porous media, Physical Review E 71 (2005), 046308–1, 046308–16.
  • B. Berkowitz, A. Cortis, I. Dror, and H. Scher, Laboratory experiments on dispersive transport across interfaces: The role of flow direction, Water Resources Research 45 (2009).
  • Rabi N. Bhattacharya and Edward C. Waymire, Stochastic processes with applications, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1990. A Wiley-Interscience Publication. MR 1054645
  • Leo Breiman, Probability, Classics in Applied Mathematics, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. Corrected reprint of the 1968 original. MR 1163370, DOI 10.1137/1.9781611971286
  • David Freedman, Brownian motion and diffusion, Holden-Day, San Francisco, Calif.-Cambridge-Amsterdam, 1971. MR 0297016
  • Masatoshi Fukushima, Dirichlet forms and Markov processes, North-Holland Mathematical Library, vol. 23, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1980. MR 569058
  • J. M. Harrison and L. A. Shepp, On skew Brownian motion, Ann. Probab. 9 (1981), no. 2, 309–313. MR 606993
  • H. Hoteit, R. Mose, A. Younes, F. Lehmann, and Ph. Ackerer, Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods, Math. Geol. 34 (2002), no. 4, 435–456. MR 1951790, DOI 10.1023/A:1015083111971
  • K. Itô and H. P. McKean Jr., Brownian motions on a half line, Illinois J. Math. 7 (1963), 181–231. MR 154338
  • Olav Kallenberg, Foundations of modern probability, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. MR 1876169, DOI 10.1007/978-1-4757-4015-8
  • Reinhard Lang, Effective conductivity and skew Brownian motion, J. Statist. Phys. 80 (1995), no. 1-2, 125–146. MR 1340556, DOI 10.1007/BF02178356
  • J.-F. Le Gall, One-dimensional stochastic differential equations involving the local times of the unknown process, Stochastic analysis and applications (Swansea, 1983) Lecture Notes in Math., vol. 1095, Springer, Berlin, 1984, pp. 51–82. MR 777514, DOI 10.1007/BFb0099122
  • Antoine Lejay, On the constructions of the skew Brownian motion, Probab. Surv. 3 (2006), 413–466. MR 2280299, DOI 10.1214/154957807000000013
  • Antoine Lejay and Miguel Martinez, A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients, Ann. Appl. Probab. 16 (2006), no. 1, 107–139. MR 2209338, DOI 10.1214/105051605000000656
  • Zhi Ming Ma and Michael Röckner, Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992. MR 1214375, DOI 10.1007/978-3-642-77739-4
  • Petr Mandl, Analytical treatment of one-dimensional Markov processes, Die Grundlehren der mathematischen Wissenschaften, Band 151, Academia [Publishing House of the Czechoslovak Academy of Sciences], Prague; Springer-Verlag New York Inc., New York, 1968. MR 0247667
  • Michèle Mastrangelo and Mouloud Talbi, Mouvements browniens asymétriques modifiés en dimension finie et opérateurs différentiels à coefficients discontinus, Probab. Math. Statist. 11 (1990), no. 1, 47–78 (French, with English summary). With the collaboration of Victor Mastrangelo and Youssef Ouknine. MR 1096939
  • Y. Ouknine, Le “Skew-Brownian motion” et les processus qui en dérivent, Teor. Veroyatnost. i Primenen. 35 (1990), no. 1, 173–179 (French); English transl., Theory Probab. Appl. 35 (1990), no. 1, 163–169 (1991). MR 1050069, DOI 10.1137/1135018
  • N. I. Portenko, Generalized diffusion processes, Translations of Mathematical Monographs, vol. 83, American Mathematical Society, Providence, RI, 1990. Translated from the Russian by H. H. McFaden. MR 1104660, DOI 10.1090/mmono/083
  • N. I. Portenko, A probabilistic representation for the solution to one problem of mathematical physics, Ukraïn. Mat. Zh. 52 (2000), no. 9, 1272–1282 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 52 (2000), no. 9, 1457–1469 (2001). MR 1816940, DOI 10.1023/A:1010388321016
  • Jorge M. Ramirez, Enrique A. Thomann, Edward C. Waymire, Roy Haggerty, and Brian Wood, A generalized Taylor-Aris formula and skew diffusion, Multiscale Model. Simul. 5 (2006), no. 3, 786–801. MR 2257235, DOI 10.1137/050642770
  • Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1991. MR 1083357, DOI 10.1007/978-3-662-21726-9
  • R. E. Showalter, Hilbert space methods for partial differential equations, Electronic Monographs in Differential Equations, San Marcos, TX, 1994. Electronic reprint of the 1977 original. MR 1302484
  • Daniel W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 316–347. MR 960535, DOI 10.1007/BFb0084145
  • Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
  • K. Ueno, F. Kitagawa, and N. Kitamura, Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip, Lab on a Chip: Miniaturisation for Chemistry, Biology and Bioengineering 2 (2002), 231–234.
  • J.B. Walsh, A diffusion with a discontinuous local time, Astérisque 52–53 (1978), 37–45.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60J60, 60G17
  • Retrieve articles in all journals with MSC (2010): 60J60, 60G17
Additional Information
  • Jorge M. Ramirez
  • Affiliation: Escuela de Matemáticas, Universidad Nacional de Colombia Sede Medellin, Calle 59A, No. 63-20, Medellin, Colombia
  • Email: jmramirezo@unal.edu.co
  • Received by editor(s): May 13, 2010
  • Received by editor(s) in revised form: August 27, 2010
  • Published electronically: March 3, 2011
  • Additional Notes: The author’s research was partially supported by The University of Arizona and grants DMS-0073958 and CMG 03-27705 from the National Science Foundation to Oregon State University.
  • Communicated by: Richard C. Bradley
  • © Copyright 2011 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 139 (2011), 3739-3752
  • MSC (2010): Primary 60J60; Secondary 60G17
  • DOI: https://doi.org/10.1090/S0002-9939-2011-10766-4
  • MathSciNet review: 2813404