THE FANO SURFACE OF THE FERMAT CUBIC THREEFOLD,
THE DEL PEZZO SURFACE OF DEGREE 5
AND A BALL QUOTIENT

XAVIER ROULLEAU

(Communicated by Ted Chinburg)

Abstract. In this paper we study a surface which has many intriguing and
puzzling aspects: on one hand it is related to the Fano surface of lines of a
cubic threefold, and on the other hand it is related to a ball quotient occurring
in the realm of hypergeometric functions, as studied by Deligne and Mostow.
It is moreover connected to a surface constructed by Hirzebruch in his works
for constructing surfaces with Chern ratio equal to 3 by arrangements of lines
on the plane. Furthermore, we obtain some results that are analogous to the
results of Yamasaki-Yoshida when they computed the lattice of the Hirzebruch
ball quotient surface.

1. Introduction

Let us recall the following well known theorem (see [3], Theorem 2) that relates
an inequality between (log) Chern numbers with the theory of ball quotients:

Theorem 1 (Bogomolov, Hirzebruch, Miyaoka, Sakai, Yau). Let S be a smooth
projective surface with ample canonical bundle K and let D be a reduced simple
normal crossing divisor on S (maybe 0). Suppose that $K + D$ is nef and big. Then
the inequality

$$\tilde{c}_1^2 \leq 3\tilde{c}_2$$

holds, where \tilde{c}_1^2, \tilde{c}_2 are the logarithmic Chern numbers of $S' = S - D$ defined by

$$\tilde{c}_1^2 = (K + D)^2$$

and

$$\tilde{c}_2 = \chi_{\text{top}}(S').$$

Furthermore, the equality occurs if and only if S' is a ball quotient, i.e., if and only if we obtain S' by dividing the ball \mathbb{B}_2 with respect
to a discrete group Γ of automorphisms acting on \mathbb{B}_2 properly discontinuously and
with only isolated fixed points.

If a smooth projective surface X contains a rational curve and its Chern numbers
satisfy $c_2^2 = 3c_2 > 0$, then X is the projective plane.

Few examples of surfaces with Chern ratio $\frac{c_1^2}{c_2}$ equals 3 have been constructed
algebraically, i.e. by ramified covers of known surfaces. The first examples are owed
independently to Inoue and Livné (for a reference, see [1]). Among these examples, there is a surface S with Chern numbers

\[c_1^2(S) = 3c_2(S) = 3^22 \]

that is the blow-down of (-1)-curves of a certain cyclic cover of the Shioda modular surface of level 5. Hirzebruch [5] then constructed other examples. Starting with the degree 5 del Pezzo surface H_1 and for any $n > 1$, he constructed a cover \(\eta_n : H_n \to H_1 \) of degree n^5 branched exactly over the ten (-1)-curves of H_1, with order n, such that for $n = 5$:

Theorem 2 (Hirzebruch). The Chern numbers of H_5 satisfy

\[c_1^2(H_5) = 3c_2(H_5) = 3^25^4. \]

Then Ishida [7] established a link between the surface H_5 and the Inoue-Livné surface S:

Proposition 3 (Ishida). There is an étale map $H_5 \to S$ that is a quotient of H_5 by an automorphism group of order 25.

In the present paper, we give an example of a surface with log Chern numbers satisfying $\bar{c}_1^2 = 3\bar{c}_2$, and we obtain in part A) and B) of Theorem 4 below, results analogous to Theorem 2 and Proposition 3:

Theorem 4. A) There is an open subvariety $S' \subset S$, complement of 12 disjoint elliptic curves on S, such that S' is a ball quotient with log Chern numbers $\bar{c}_1^2 = 3\bar{c}_2 = 3^4$.

B) There is an étale map $\kappa : H_3 \to S$ that is a quotient of H_3 by an automorphism of order 3, and there is a degree 3^4 ramified cover $\eta : S \to H_1$ branched with order 3 over the ten (-1)-curves of H_1.

C) The surface $T = \kappa^{-1}S' \subset H_3$ is a ball quotient. Let Λ be the lattice of T, i.e. the transformation group of the 2-dimensional unit ball \mathbb{B}_2 such that $\Lambda \setminus \mathbb{B}_2$ is isomorphic to T. The lattice Λ is the commutator group of the congruence group

\[\Gamma = \{ T \in GL_3(\mathbb{Z}[\alpha]): T \equiv I \text{ modulo } (1 - \alpha) \text{ and } 'THT = H \}, \]

where α is a primitive third root of unity, I is the identity matrix and H is a Hermitian diagonal matrix with entries $(1, 1, -1)$ defining the 2-dimensional unit ball \mathbb{B}_2.

D) The lattice Γ is the Deligne-Mostow lattice associated to the 5-tuple $(1/3, 1/3, 1/3, 1/3, 2/3)$ (number 1 in [4], p. 86).

We wish to remark that in order to prove parts B and C, we use a result of Namba on ramified Abelian covers of varieties that, to the best of our knowledge, has never been used prior to this paper.

We also wish to remark that parts C and D of Theorem 4 are the very analog of the following result of Yamazaki and Yoshida [14]:
Theorem 5 (Yamazaki, Yoshida [14], Theorem 1). The lattice \(\mathcal{N} \) of the ball quotient \(\mathcal{H}_5 \) is the commutator group of the congruence group
\[
\Gamma' = \{ T \in GL_5(\mathbb{Z}[\mu]) / T \equiv I \mod (1-\mu) \text{ and } THT = H \},
\]
where \(\mu \) is a primitive fifth root of unity, \(I \) is the identity matrix and \(H \) is a Hermitian diagonal matrix with entries \((1, 1, (1-\sqrt{5})/2)\), defining the 2-dimensional unit ball \(\mathbb{B}_2 \).

The lattice \(\Gamma' \) is the Deligne-Mostow lattice associated to the 5-tuple \((2/5, 2/5, 2/5, 2/5)\) (number 4 in [11], p. 86).

Let us explain how the Deligne-Mostow lattices occur. Let \(\mu = (\mu_1, \ldots, \mu_5) \) be a 5-tuple of rational numbers with \(0 < \mu_i < 1 \) and \(\sum \mu_i = 2 \). Let \(d \) be the l.c.m. of the \(\mu_i \), and let \(n_i \) be such that \(\frac{\mu_i}{n_i} = \mu_i \). Let \(M \) be the moduli space of 5-tuples \(x = (x_1, \ldots, x_5) \) of distinct points on the projective line \(\mathbb{P}^1 \). For each point \(x \) of \(M \), and \(1 \leq i < j \leq 5 \), we consider the periods
\[
\omega_{ij} = \int_{x_i}^{x_j} \frac{dz}{v}
\]
on the curve \(v^d = \prod_{k=1}^{\mathbb{Z}[\mu]} (z - x_i)^{n_k} \). These (multivalued) maps \(\omega_{ij} \) clearly factor to \(Q = M / Aut(\mathbb{P}^1) \) (that is isomorphic to the complement of the 10 \((-1)\)-curves of the degree of the Fermat surface). They are called hypergeometric functions, and they satisfy what is called the Appell differential equations system. It turns out that the \(\omega_{ij} \) span a 3-dimensional vector space \(W_\mu \), and these yield a multivalued holomorphic map \(Q \to \mathbb{P}^2 = \mathbb{P}(W_\mu^*) \). In fact, the image of that map lies in the (copy of a) unit ball \(\mathbb{B}_2 \) of \(\mathbb{C}^2 \subset \mathbb{P}^2 \). The multivaluedness is measured by the monodromy representation
\[
\pi_1(Q) \to Aut(\mathbb{B}_2),
\]
whose image is denoted by \(\Gamma_\mu \). The main results of the fundamental papers of Deligne and Mostow [11] and Mostow [9] are to prove that the group \(\Gamma_\mu \subset PGL(W_\mu^*) \) is discontinuous and acts as a lattice on \(\mathbb{B}_2 \) for only a finite number of 5-tuple \(\mu \), to compute these \(\mu \) and to provide examples of non-arithmetic lattices acting on \(\mathbb{B}_2 \).

2. The Fano surface of the Fermat cubic as a cover of \(\mathcal{H}_1 \)

Let \(S \) be the Fano surface of the Fermat cubic threefold:
\[F = \{ x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 = 0 \} \to \mathbb{P}^3. \]
This surface is smooth, has Chern numbers \(c_2 = 45, c_2 = 27 \) and irregularity 5 (see [3], (0.7)). Let \(A(3,3,5) \subset GL_5(\mathbb{C}) \) be the group of diagonal matrices with determinant 1 whose diagonal elements are in \(\mu_3 := \{ x \in \mathbb{C} / x^3 = 1 \} \). By Theorem 26 of [11], the automorphism group of \(F \) is the semi-direct product of the permutation group \(\Sigma_5 \) and \(A(3,3,5) \simeq (\mathbb{Z}/3\mathbb{Z})^4 \). An automorphism \(f \) of \(F \) preserves the lines and induces an automorphism on \(S \) denoted by \(\rho(f) \). Let \(G \) be the group \(\rho(A(3,3,5)) \).

Let \(X \) be the quotient of \(S \) by the group \(G \) and let \(\eta : S \to X \) be the quotient map.

Proposition 6. The surface \(X \) is (isomorphic to) the del Pezzo surface \(\mathcal{H}_1 \), and the cover \(\eta \) is branched with index 3 over the ten \((-1)\)-curves of \(X \).
Proof: Let us outline the proof of Proposition \[\text{n}\]. Using classical results on the quotient of a surface by a group action, we show that \(X\) is a smooth surface. Then we compute its Chern numbers and prove that the blowing down of four \((-1)\)-curves on \(X\) is the plane. This allows us to conclude that \(X\) is the degree 5 del Pezzo surface \(H_1\).

In order to prove that the surface \(X\) is smooth, we need to recall two lemmas. Let \(s\) be a point of \(S\). Let us denote by \(T_{S,s}\) the tangent space of \(S\) at \(s\), by \(L_s \hookrightarrow F\) the line on \(F \hookrightarrow \mathbb{P}^4 = \mathbb{P}(\mathbb{C}^5)\) corresponding to \(s\) and by \(P_s \subset \mathbb{C}^5\) the subjacent plane to the line \(L_s\).

Lemma 7 ([11 Proposition 12]). Let \(s\) be a fixed point of an automorphism \(\rho(f) (f \in A(3,3,5))\). The plane \(P_s\) is stable under the action of \(f\), and the eigenvalues of

\[
d\rho(f) : T_{S,s} \rightarrow T_{S,s}
\]

are equal to the eigenvalues of the restriction of \(f \in A(3,3,5)\) to the plane \(P_s \subset \mathbb{C}^5\).

Hence this lemma gives us the action of the differential \(d\rho(f)\) on the fixed points of \(\rho(f)\).

Recall:

Lemma 8 ([11 Theorem 26]). The Fano surface \(S\) of the Fermat cubic contains 30 elliptic curves, denoted by \(E_{ij}^\beta\) for indices \(1 \leq i < j \leq 5, \beta \in \mu_3\). Each curve \(E_{ij}^\beta\) parametrizes the lines on a cone in the cubic \(F\). Their configuration is as follows:

\[
E_{ij}^\beta E_{st}^\gamma = \begin{cases}
1 & \text{if } \{i,j\} \cap \{s,t\} = \emptyset, \\
-3 & \text{if } E_{ij}^\beta = E_{st}^\gamma, \\
0 & \text{otherwise.}
\end{cases}
\]

The elements of the group \(G\) have order 3; for each of them it is easy to compute its closed set of fixed points. Let \(I\) be the set of points \(s\) in \(S\) such that \(s\) is an isolated fixed point of an element of \(G\). \(I\) is the set of the 135 intersection points of the 30 elliptic curves. Let \(i, j, s, t\) be indices such that \(\{i,j\} \cap \{s,t\} = \emptyset\) and let \(s\) be the intersection point of \(E_{ij}^\beta\) and \(E_{st}^\gamma\). The orbit of \(s\) by \(G\) is the set of the 9 intersection points of the curves \(E_{ij}^\beta\) and \(E_{st}^\gamma\), \(\beta, \gamma \in \mu_3\). For \(s \in I\) the group

\[
G_s = \{g \in G / s \text{ is a isolated fixed point of } g\}
\]
is isomorphic to \(\mu_3^2\), and by Lemma \[\text{n}\] its representation on the space \(T_{S,s}\) is isomorphic to the representation

\[
(a_1, a_2) \in \mu_3^2, \quad (\alpha_1, \alpha_2, \alpha_1 x, \alpha_2 y) \in \mathbb{C}^2
\]
on \(\mathbb{C}^2\). This implies by \[\text{n}\] that the image of \(s\) is a smooth point of \(X\); thus \(X\) is smooth.

The ramification index of \(\eta : S \rightarrow X\) at the points of \(I\) is 9, and the ramification index of \(\eta\) on the curve \(E_{ij}^\beta\) is 3. Let us denote by \(K_V\) the canonical divisor of a surface \(V\). Let be \(\Sigma = \sum_{i,j,\beta} E_{ij}^\beta\); the ramification divisor of \(\eta : S \rightarrow X\) is \(2\Sigma\) and

\[
K_S = \eta^* K_X + 2\Sigma.
\]

By \[\text{n}\], Lemma 8.1 and Proposition 10.21, we know moreover that \(\Sigma = 2K_S\); hence \(3^4(K_X)^2 = (\eta^* K_X)^2 = (-3K_S)^2 = 9.45\) and \((K_X)^2 = 5\).

The stabilizer in \(G\) of an elliptic curve \(E_{ij}^\beta \hookrightarrow S\) contains 27 elements, and the group that fixes each point of \(E_{ij}^\beta\) has 3 elements. Let \(\eta_{ij}^\alpha : E_{ij}^\alpha \rightarrow X_{ij}\) be the restriction of \(\eta\) to \(E_{ij}^\beta\). The curve \(X_{ij}\) is smooth because it is the quotient of a
smooth curve by an automorphism group. The map \(\eta_{ij}^\beta \) is a degree 9 ramified cover over 3 points with ramification index 3. Hence

\[
0 = \chi_{\text{top}}(E_{ij}^\beta) = 9(\chi_{\text{top}}(X_{ij}) - 3) + 3.3
\]

and \(\chi_{\text{top}}(X_{ij}) = 2 \); therefore \(X_{ij} \) is a smooth rational curve. As

\[
\eta^*X_{ij} = 3(E_{ij}^1 + E_{ij}^3 + E_{ij}^{\alpha^2}),
\]

we deduce that the 10 curves \(X_{ij} \) have the configuration

\[
X_{ij}X_{st} = \begin{cases}
1 & \text{if } \{i, j\} \cap \{s, t\} = \emptyset, \\
-1 & \text{if } X_{ij} = X_{st}, \\
0 & \text{otherwise.}
\end{cases}
\]

Let \(I' = \eta(I) \) and let \(\Sigma' = \sum X_{ij} \). By additive property of the Euler characteristic, we have

\[
3^3 = \chi_{\text{top}}(S) = 3^3\chi_{\text{top}}(X - \Sigma') + 3^3\chi_{\text{top}}(\Sigma' - I') + 3^2\chi_{\text{top}}(I').
\]

Moreover, \(\chi_{\text{top}}(\Sigma') = 5 \) (for an example of such computation see [12]), and we obtain \(\chi_{\text{top}}(X) = 7 \). We can blow down four disjoint \((-1\)-curves among the ten curves \(X_{ij} \), and we obtain a surface with Chern numbers

\[
c_1^2 = 3c_2 = 9,
\]

but this surface contains 6 rational curves. Hence, by Theorem [1] it is the plane: \(X \) is the blow-up of the plane at four points. These points are in general position because of the intersection numbers of the \(X_{ij} \). Therefore \(X \) is the degree 5 del Pezzo surface \(\mathcal{H}_1 \), and the \(X_{ij} \) are its ten \((-1\)-curves.

We proved that the quotient map \(\eta : S \to X = \mathcal{H}_1 \) is an Abelian cover branched over the ten \((-1\)-curves of \(X \) with ramification index 3, and this completes the proof of Proposition 6.

Let us now prove that:

Proposition 9. There exists an étale map \(\kappa : \mathcal{H}_3 \to S \) of degree 3.

Proof. To prove Proposition 9 we begin to recall Namba’s results on Abelian covers of algebraic varieties.

Let \(D_1, \ldots, D_s \) be irreducible hypersurfaces of a smooth projective variety \(M \) and let \(e_1, \ldots, e_s \) be positive integers. A covering \(\pi : Y \to M \) is said to branch (resp. to branch at most) at \(D = e_1D_1 + \cdots + e_sD_s \) if the branch locus is (resp. is contained in) \(\cup D_i \) and the ramification index over \(D_i \) is \(e_i \) (resp. divides \(e_i \)). An Abelian covering \(\pi : Y \to M \) which branches at \(D \) is said to be maximal if for every Abelian covering \(\pi_1 : Y_1 \to M \) which branches at most at \(D \), there is a map \(\kappa : Y \to Y_1 \) such that \(\pi = \pi_1 \circ \kappa \). Let

\[
\text{Div}^0(M, D) = \{ \hat{E} = \frac{a_1}{e_1}D_1 + \cdots + \frac{a_s}{e_s}D_s + E/a_i \in \mathbb{Z}, E \text{ integral, } c_1(\hat{E}) = 0 \}.
\]

We say that \(F_1, F_2 \in \text{Div}^0(M, D) \) are linearly equivalent \(F_1 \sim F_2 \) if \(F_1 - F_2 \) is integral and is a principal divisor. The following result is due to Namba.

Theorem 10 (Namba [10] Thm. 2.3.18]). There is a bijective map of the set of (isomorphism classes of) Abelian coverings \(\pi : Y \to M \) branched at most at \(D \) onto the set of finite subgroups \(\mathcal{G} \) of \(\text{Div}^0(M, D) / \sim \). Let \(G_\pi \) be the transformation group of the cover \(\pi : Y \to M \). The bijective map satisfies:
3410 XAVIER ROULLEAU

(1) \(G_x \simeq \mathcal{G}(\pi) \).
(2) Let \(\pi_1 : Y_1 \to M \) and \(\pi_2 : Y_2 \to M \) be Abelian covers branched at most at \(D \).
There is a map \(\kappa : Y_1 \to Y_2 \) such that \(\pi_1 = \pi_2 \circ \kappa \) if and only if \(\mathcal{G}(\pi_1) \subseteq \mathcal{G}(\pi_2) \).

One applies this theorem to the ten \((-1)\)-curves \(X_{1j} \) of \(X = \mathcal{H}_1 \) with \(e_i = 3 \).
The group \(\text{Div}^0(\mathcal{H}_1, D)/\sim \) is isomorphic to \((\mathbb{Z}/3\mathbb{Z})^5\) (for brevity, we skip the proof, but for an example of such a computation, see the proof of Lemma \[13\].

As \(\eta_3 : \mathcal{H}_3 \to \mathcal{H}_1 \) is a degree 3\(^5\) Abelian cover branched over the \((-1)\)-curves with index 3, the group \(\mathcal{G}(\eta_3) \) is equal to \(\text{Div}^0(\mathcal{H}_1, D)/\sim \). Thus by Theorem \[10\] there exists \(\kappa : \mathcal{H}_3 \to \mathcal{H}_1 \) such that \(\eta_3 = \eta \circ \kappa \). As the maps \(\eta \) and \(\eta_3 \) are branched with order 3 over the ten \((-1)\)-curves of \(\mathcal{H}_1 \), the map \(\kappa \) is étale. This completes the proof of Proposition \[9\]. \(\square \)

3. THE FANO SURFACE OF THE FERMAT CUBIC AS A BALL QUOTIENT

By \[3\], Theorem 7.8, (9.14) and (10.11), the Fano surface \(S \) of the Fermat cubic is smooth with invariants \(c_1^2 = 45 \) and \(c_2 = 27 \). Let \(S' \subseteq S \) be the complement of the union \(D \) of 12 disjoint elliptic curves on \(S \) (there are 5 such sets of 12 elliptic curves; we can take by example the 12 curves \(E_{1i}^3 \), \(2 \leq i \leq 5, \beta^3 = 1 \)). Let \(\tau_1, \tau_2 \) be the logarithmic Chern numbers of \(S' \).

Proposition 11. We have \(3\tau_2 = \tau_1^2 = 81 \); therefore \(S' \) is a ball quotient.

Proof. The canonical divisor \(K_S \) of \(S \) is ample, \(K_S^2 = 45 \) and \(K_SE = -E^2 = 3 \) for an elliptic curve \(E \to S \) (see \[9\], (0.7) and \[11\], Proposition 10); therefore \(K_S + D \) is nef. As \(c_1^2 = (K_S + D)^2 = 45 + 2.12.3 - 12.3 = 81 \), the divisor \(K_S + D \) is also big. As \(c_2(S') = c(S - D) = c(S) = 27 \), we obtain \(3\tau_2 = \tau_1^2 \). Because \(D \) has no singularities, Theorem \[11\] implies that \(S' \) is a ball quotient. \(\square \)

Let \(H \) be the Hermitian diagonal matrix with entries \((1, 1, -1)\) defining the 2-dimensional unit ball \(\mathbb{B}_2 \) into \(\mathbb{P}^2 \). Let \(\alpha \) be a third primitive root of unity and let \(\Gamma \) be the congruence group

\[
\Gamma = \{ T \in GL_3(\mathbb{Z}[\alpha]) | T \equiv I \text{ modulo } (1 - \alpha) \text{ and } ^t\bar{T}HT = H \},
\]

where \(I \) is the identity matrix. As \(\kappa \) is étale and \(S' \) is a ball quotient, the surface \(\mathcal{T} = \kappa^{-1}S' \subseteq \mathcal{H}_3 \) is a ball quotient. Let \(\Lambda \) be the transformation group of the 2-dimensional unit ball \(\mathbb{B}_2 \) such that \(\Lambda \setminus \mathbb{B}_2 \simeq \mathcal{T} \). We have:

Theorem 12. The group \(\Lambda \) is the commutator group of \(\Gamma \).

Proof. In order to compute \(\Lambda \), we combine ideas in \[14\], where Yamazaki and Yoshida computed the lattice of the ball quotient surface \(\mathcal{H}_5 \), and we use Namba’s Theorem \[10\].

Let \(\ell_1, \ldots, \ell_6 \in H^0(\mathbb{P}^2, \mathcal{O}(1)) \) be the linear forms defining the 6 lines on the plane going through 4 points in general position. Let \(\mathcal{H}'_3 \) be the normal algebraic surface determined by the field

\[
\mathbb{C}(\mathbb{P}^2)((\ell_2^{\ell_1})^{1/3}, \ldots, (\ell_2^{\ell_1})^{1/3}).
\]

It is an Abelian cover \(\pi : \mathcal{H}'_3 \to \mathbb{P}^2 \) of degree \(3^5 \) of the plane branched with order 3 over the 6 lines \(\{ \ell_i = 0 \} \), and the surface \(\mathcal{H}_3 \) is the fibered product of \(\pi : \mathcal{H}'_3 \to \mathbb{P}^2 \)
and the blow-up map $\tau : H_1 \to \mathbb{P}^2$ (see [13], (1.3)). The situation is as follows:

$$
\begin{array}{ccc}
S & \eta_3 & \eta \\
\downarrow & \downarrow & \downarrow \\
H_3 & H_3' & \mathbb{P}^2.
\end{array}
$$

We apply Namba’s Theorem [10] to the 6 lines of the complete quadrilateral on the plane, with weights $e_i = 3$. □

Lemma 13. The group $\text{Div}^0(\mathbb{P}^2, D)/\sim$ is isomorphic to $(\mathbb{Z}/3\mathbb{Z})^5$.

Proof. Let L_i be the line $\{ \ell_i = 0 \}$ and let L be a generic line. The group

$$
\text{Div}^0(\mathbb{P}^2, D)/\sim = \{ aL + \sum a_i L_i/a, a, a_1, \ldots, a_6 \in \mathbb{Z} \text{ and } 3a + \sum a_i = 0 \}/\sim
$$

is a sub-group of

$$
\text{Div}(\mathbb{P}^2, D)/\sim = \{ aL + \sum a_i L_i/a, a, a_1, \ldots, a_6 \in \mathbb{Z} \}/\sim,
$$

where the rational divisor $E = aL + \sum a_i L_i$ in $\text{Div}(\mathbb{P}^2, D)$ is equivalent to 0 if and only if the $a_i, 1 \leq i \leq 6$, are divisible by 3 and $c_1(E) = a + \frac{1}{3} \sum a_i = 0$ (here we use that linear and numerical equivalences are equal on the plane). The map

$$
\phi : \left\{ \begin{array}{l}
\text{Div}(\mathbb{P}^2, D)/\sim \to \mathbb{Z} \times (\mathbb{Z}/3\mathbb{Z})^6, \\
\{ aL + \sum a_i L_i/a, a, a_1, \ldots, a_6 \} \to (3a + \sum a_i, a_1, \ldots, a_6)
\end{array} \right.
$$

is well defined and is an isomorphism. The group $\text{Div}^0(\mathbb{P}^2, D)/\sim$ is isomorphic to

$$
\{ (a, a_1, \ldots, a_6) \in \mathbb{Z} \times (\mathbb{Z}/3\mathbb{Z})^6/a = 0 \text{ and } \sum a_i = 0 \}
$$

and is therefore isomorphic to $(\mathbb{Z}/3\mathbb{Z})^5$.

By Lemma [13] and Theorem [10] the degree 3^5 Abelian cover $\pi : H_3' \to \mathbb{P}^2$ is the maximal Abelian cover.

Let $b : \mathbb{P}^2 \to \mathbb{N}$ be the function such that $b(p) = 1$ outside the complete quadrilateral, $b(p) = 3$ on the complete quadrilateral minus the 4 triple points p_1, \ldots, p_4, and $b(p) = \infty$ on these 4 points. The pair (\mathbb{P}^2, b) is an orbifold (for the theory of orbifold we refer to [13], Chap. 5). By [6], Chap. 5, the universal cover of that orbifold is \mathbb{B}_2 with the transformation group Γ. Therefore, a cover $Z \to \mathbb{P}^2$ with branching index 3 over the complete quadrilateral corresponds to a normal sub-group K of Γ, and Γ/K is isomorphic to the group of transformation of the covering $Z \to \mathbb{P}^2$.

If, moreover, the cover $Z \to \mathbb{P}^2$ is Abelian, the group K contains the commutator group $[\Gamma, \Gamma]$. Thus $\mathbb{B}_2/[\Gamma, \Gamma]$ is the maximal Abelian cover of (\mathbb{P}^2, b). We have seen that the cover $\pi : H_3' \to \mathbb{P}^2$ of degree 3^5 is maximal among Abelian covers of (\mathbb{P}^2, b). Thus the lattice of the ball quotient T is the commutator group $[\Gamma, \Gamma]$. □

Moreover, we remark that:

Theorem 14. The lattice Γ is the Deligne Mostow lattice number 1 in [4], p. 86.

Proof. This is the fact that the universal cover of the orbifold (\mathbb{P}^2, b) of the proof of Theorem [12] is \mathbb{B}_2 with the transformation group Γ. □
Acknowledgements

The author wishes to thank Amir Dzambic for stimulating discussions on this paper and Martin Deraux for his explanations of the numerous questions of the author on Deligne-Mostow ball lattices. Finally, he wishes to thank the Max Planck Institute of Bonn and the Japan Society for the Promotion of Sciences for their financial support.

References

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

E-mail address: rouleau@ms.u-tokyo.ac.jp