Quantum automorphisms of twisted group algebras and free hypergeometric laws
HTML articles powered by AMS MathViewer
- by Teodor Banica, Julien Bichon and Stephen Curran
- Proc. Amer. Math. Soc. 139 (2011), 3961-3971
- DOI: https://doi.org/10.1090/S0002-9939-2011-10877-3
- Published electronically: March 15, 2011
- PDF | Request permission
Abstract:
We prove that we have an isomorphism of type $A_{aut}(\mathbb C_\sigma [G])\simeq A_{aut}(\mathbb C[G])^\sigma$, for any finite group $G$, and any $2$-cocycle $\sigma$ on $G$. In the particular case $G=\mathbb Z_n^2$, this leads to a Haar measure-preserving identification between the subalgebra of $A_o(n)$ generated by the variables $u_{ij}^2$ and the subalgebra of $A_s(n^2)$ generated by the variables $X_{ij}=\sum _{a,b=1}^np_{ia,jb}$. Since $u_{ij}$ is “free hyperspherical” and $X_{ij}$ is “free hypergeometric”, we obtain in this way a new free probability formula, which at $n=\infty$ corresponds to the well-known relation between the semicircle law and the free Poisson law.References
- Teodor Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), no. 4, 763–780. MR 1709109, DOI 10.1007/s002080050315
- Teodor Banica and Julien Bichon, Quantum groups acting on 4 points, J. Reine Angew. Math. 626 (2009), 75–114. MR 2492990, DOI 10.1515/CRELLE.2009.003
- Teodor Banica and Benoît Collins, Integration over compact quantum groups, Publ. Res. Inst. Math. Sci. 43 (2007), no. 2, 277–302. MR 2341011, DOI 10.2977/prims/1201011782
- Teodor Banica, Benoit Collins, and Paul Zinn-Justin, Spectral analysis of the free orthogonal matrix, Int. Math. Res. Not. IMRN 17 (2009), 3286–3309. MR 2534999, DOI 10.1093/imrn/rnp054
- T. Banica, S. Curran and R. Speicher, Classification results for easy quantum groups, Pacific J. Math. 247 (2010), 1–26.
- Teodor Banica and Debashish Goswami, Quantum isometries and noncommutative spheres, Comm. Math. Phys. 298 (2010), no. 2, 343–356. MR 2669439, DOI 10.1007/s00220-010-1060-5
- H. Bercovici and D. Voiculescu, Superconvergence to the central limit and failure of the Cramér theorem for free random variables, Probab. Theory Related Fields 103 (1995), no. 2, 215–222. MR 1355057, DOI 10.1007/BF01204215
- J. Bhowmick, D. Goswami and A. Skalski, Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc. 363 (2011), 901–921.
- Julien Bichon, Quelques nouvelles déformations du groupe symétrique, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 9, 761–764 (French, with English and French summaries). MR 1769943, DOI 10.1016/S0764-4442(00)00275-5
- Julien Bichon, Algebraic quantum permutation groups, Asian-Eur. J. Math. 1 (2008), no. 1, 1–13. MR 2400296, DOI 10.1142/S1793557108000023
- Julien Bichon, An De Rijdt, and Stefaan Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703–728. MR 2202309, DOI 10.1007/s00220-005-1442-2
- Stephen Curran, Quantum exchangeable sequences of algebras, Indiana Univ. Math. J. 58 (2009), no. 3, 1097–1125. MR 2541360, DOI 10.1512/iumj.2009.58.3939
- S. Curran and R. Speicher, Asymptotic infinitesimal freeness with amalgamation for Haar quantum unitary random matrices, Comm. Math. Phys., to appear.
- Yukio Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), no. 5, 1731–1749. MR 1213985, DOI 10.1080/00927879308824649
- Vijay Kodiyalam and V. S. Sunder, Temperley-Lieb and non-crossing partition planar algebras, Noncommutative rings, group rings, diagram algebras and their applications, Contemp. Math., vol. 456, Amer. Math. Soc., Providence, RI, 2008, pp. 61–72. MR 2416144, DOI 10.1090/conm/456/08884
- D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253, DOI 10.1090/crmm/001
- C. Voigt, The Baum-Connes conjecture for free orthogonal quantum groups, arxiv:0911.2999.
- Shuzhou Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195–211. MR 1637425, DOI 10.1007/s002200050385
Bibliographic Information
- Teodor Banica
- Affiliation: Department of Mathematics, Cergy-Pontoise University, 95000 Cergy-Pontoise, France
- Email: teodor.banica@u-cergy.fr
- Julien Bichon
- Affiliation: Department of Mathematics, Clermont-Ferrand University, Campus des Cezeaux, 63177 Aubiere Cedex, France
- MR Author ID: 633469
- Email: bichon@math.univ-bpclermont.fr
- Stephen Curran
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Address at time of publication: Department of Mathematics, University of California, Los Angeles, California 90095
- Email: curransr@math.berkeley.edu, curransr@math.ucla.edu
- Received by editor(s): February 16, 2010
- Received by editor(s) in revised form: September 13, 2010
- Published electronically: March 15, 2011
- Communicated by: Marius Junge
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 3961-3971
- MSC (2010): Primary 46L65; Secondary 16W30, 46L54
- DOI: https://doi.org/10.1090/S0002-9939-2011-10877-3
- MathSciNet review: 2823042