On convergence of the proximal point algorithm in Banach spaces
HTML articles powered by AMS MathViewer
- by Shin-ya Matsushita and Li Xu
- Proc. Amer. Math. Soc. 139 (2011), 4087-4095
- DOI: https://doi.org/10.1090/S0002-9939-2011-10883-9
- Published electronically: March 25, 2011
- PDF | Request permission
Abstract:
In this paper, we give a sufficient condition which guarantees that the sequence generated by the proximal point algorithm terminates after a finite number of iterations.References
- Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math., vol. 178, Dekker, New York, 1996, pp. 15–50. MR 1386667
- M. Marques Alves and B. F. Svaiter, A new proof for maximal monotonicity of subdifferential operators, J. Convex Anal. 15 (2008), no. 2, 345–348. MR 2422994
- Jean-Pierre Aubin and Ivar Ekeland, Applied nonlinear analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 749753
- V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces, 2nd ed., Mathematics and its Applications (East European Series), vol. 10, D. Reidel Publishing Co., Dordrecht; Editura Academiei Republicii Socialiste România, Bucharest, 1986. MR 860772
- Heinz H. Bauschke and Patrick L. Combettes, Construction of best Bregman approximations in reflexive Banach spaces, Proc. Amer. Math. Soc. 131 (2003), no. 12, 3757–3766. MR 1998183, DOI 10.1090/S0002-9939-03-07050-3
- H. H. Bauschke, J. V. Burke, F. R. Deutsch, H. S. Hundal, and J. D. Vanderwerff, A new proximal point iteration that converges weakly but not in norm, Proc. Amer. Math. Soc. 133 (2005), no. 6, 1829–1835. MR 2120284, DOI 10.1090/S0002-9939-05-07719-1
- H. Brézis and P.-L. Lions, Produits infinis de résolvantes, Israel J. Math. 29 (1978), no. 4, 329–345 (French, with English summary). MR 491922, DOI 10.1007/BF02761171
- J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control Optim. 31 (1993), no. 5, 1340–1359. MR 1234006, DOI 10.1137/0331063
- James V. Burke and Sien Deng, Weak sharp minima revisited. I. Basic theory, Control Cybernet. 31 (2002), no. 3, 439–469. Well-posedness in optimization and related topics (Warsaw, 2001). MR 1978735
- Yair Censor, Alfredo N. Iusem, and Stavros A. Zenios, An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming 81 (1998), no. 3, Ser. A, 373–400. MR 1617732, DOI 10.1007/BF01580089
- Ioana Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Mathematics and its Applications, vol. 62, Kluwer Academic Publishers Group, Dordrecht, 1990. MR 1079061, DOI 10.1007/978-94-009-2121-4
- Alfredo N. Iusem, On some properties of paramonotone operators, J. Convex Anal. 5 (1998), no. 2, 269–278. MR 1670352
- Michael C. Ferris, Finite termination of the proximal point algorithm, Math. Programming 50 (1991), no. 3, (Ser. A), 359–366. MR 1114237, DOI 10.1007/BF01594944
- Osman Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), no. 2, 403–419. MR 1092735, DOI 10.1137/0329022
- Shoji Kamimura and Wataru Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), no. 3, 938–945 (2003). MR 1972223, DOI 10.1137/S105262340139611X
- Shoji Kamimura, Fumiaki Kohsaka, and Wataru Takahashi, Weak and strong convergence theorems for maximal monotone operators in a Banach space, Set-Valued Anal. 12 (2004), no. 4, 417–429. MR 2112848, DOI 10.1007/s11228-004-8196-4
- G. Kassay, The proximal points algorithm for reflexive Banach spaces, Studia Univ. Babeş-Bolyai Math. 30 (1985), 9–17 (English, with Romanian summary). MR 833677
- Kazuo Kido, Strong convergence of resolvents of monotone operators in Banach spaces, Proc. Amer. Math. Soc. 103 (1988), no. 3, 755–758. MR 947652, DOI 10.1090/S0002-9939-1988-0947652-X
- Fumiaki Kohsaka and Wataru Takahashi, Strong convergence of an iterative sequence for maximal monotone operators in a Banach space, Abstr. Appl. Anal. 3 (2004), 239–249. MR 2058504, DOI 10.1155/S1085337504309036
- Fernando Javier Luque, Asymptotic convergence analysis of the proximal point algorithm, SIAM J. Control Optim. 22 (1984), no. 2, 277–293. MR 732428, DOI 10.1137/0322019
- O. L. Mangasarian, Error bounds for nondegenerate monotone linear complementarity problems, Math. Programming 48 (1990), no. 3, (Ser. B), 437–445. MR 1078196, DOI 10.1007/BF01582267
- B. Martinet, Régularisation d’inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle 4 (1970), no. Sér. R-3, 154–158 (French). MR 0298899
- Simeon Reich, Constructive techniques for accretive and monotone operators, Applied nonlinear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978) Academic Press, New York-London, 1979, pp. 335–345. MR 537545
- R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209–216. MR 262827, DOI 10.2140/pjm.1970.33.209
- R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 282272, DOI 10.1090/S0002-9947-1970-0282272-5
- R. Tyrrell Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), no. 5, 877–898. MR 410483, DOI 10.1137/0314056
- R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362, DOI 10.1007/978-3-642-02431-3
- S. Simons and C. Zălinescu, A new proof for Rockafellar’s characterization of maximal monotone operators, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2969–2972. MR 2063117, DOI 10.1090/S0002-9939-04-07462-3
- M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, Ser. A, 189–202. MR 1734665, DOI 10.1007/s101079900113
- Wataru Takahashi, Nonlinear functional analysis, Yokohama Publishers, Yokohama, 2000. Fixed point theory and its applications. MR 1864294
- Naihua Xiu and Jianzhong Zhang, On finite convergence of proximal point algorithms for variational inequalities, J. Math. Anal. Appl. 312 (2005), no. 1, 148–158. MR 2175211, DOI 10.1016/j.jmaa.2005.03.026
Bibliographic Information
- Shin-ya Matsushita
- Affiliation: Department of Electronics and Information Systems, Faculty of Systems Sciences and Technology, Akita Prefectural University, 84-4 Ebinokuchi Tsuchiya, Yurihonjo City, Akita, 015-0055 Japan
- Email: matsushita@akita-pu.ac.jp
- Li Xu
- Affiliation: Department of Electronics and Information Systems, Faculty of Systems Sciences and Technology, Akita Prefectural University, 84-4 Ebinokuchi Tsuchiya, Yurihonjo City, Akita, 015-0055 Japan
- Email: xuli@akita-pu.ac.jp
- Received by editor(s): September 6, 2010
- Published electronically: March 25, 2011
- Additional Notes: The first author was supported by Grant-in-Aid for Young Scientists (B) No. 20740084, the Ministry of Education, Culture, Sports, Science and Technology, Japan
- Communicated by: Thomas Schlumprecht
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 4087-4095
- MSC (2010): Primary 65K10, 90C25; Secondary 47J25, 47H05, 47H04
- DOI: https://doi.org/10.1090/S0002-9939-2011-10883-9
- MathSciNet review: 2823053