## Multi-point variations of the Schwarz lemma with diameter and width conditions

HTML articles powered by AMS MathViewer

- by Dimitrios Betsakos PDF
- Proc. Amer. Math. Soc.
**139**(2011), 4041-4052 Request permission

## Abstract:

Suppose that $f$ is holomorphic in the unit disk $\mathbb D$ and $f(\mathbb D)\subset \mathbb D$, $f(0)=0$. A classical inequality due to Littlewood generalizes the Schwarz lemma and asserts that for every $w\in f(\mathbb D)$, we have $|w|\leq \prod _j |z_j(w)|$, where $z_j(w)$ is the sequence of pre-images of $w$. We prove a similar inequality by replacing the assumption $f(\mathbb D)\subset \mathbb D$ with the weaker assumption Diam$f(\mathbb D)=2$. This inequality generalizes a growth bound involving only one pre-image, proven recently by Burckel et al. We also prove growth bounds for holomorphic $f$ mapping $\mathbb D$ onto a region having fixed horizontal width. We give a complete characterization of the equality cases. The main tools in the proofs are the Green function and the Steiner symmetrization.## References

- H.P. Boas,
*Julius and Julia: Mastering the art of the Schwarz lemma*. Amer. Math. Monthly 117 (2010), 770-785. - Albert Baernstein II,
*Integral means, univalent functions and circular symmetrization*, Acta Math.**133**(1974), 139–169. MR**417406**, DOI 10.1007/BF02392144 - Dimitrios Betsakos,
*Equality cases in the symmetrization inequalities for Brownian transition functions and Dirichlet heat kernels*, Ann. Acad. Sci. Fenn. Math.**33**(2008), no. 2, 413–427. MR**2431373** - D. Betsakos,
*Geometric versions of Schwarz’s lemma for quasiregular mappings*. Proc. Amer. Math. Soc.**139**(2011), 1397-1407. - A. F. Beardon and D. Minda,
*A multi-point Schwarz-Pick lemma*, J. Anal. Math.**92**(2004), 81–104. MR**2072742**, DOI 10.1007/BF02787757 - Robert B. Burckel, Donald E. Marshall, David Minda, Pietro Poggi-Corradini, and Thomas J. Ransford,
*Area, capacity and diameter versions of Schwarz’s lemma*, Conform. Geom. Dyn.**12**(2008), 133–152. MR**2434356**, DOI 10.1090/S1088-4173-08-00181-1 - V. N. Dubinin,
*Symmetrization in the geometric theory of functions of a complex variable*, Uspekhi Mat. Nauk**49**(1994), no. 1(295), 3–76 (Russian); English transl., Russian Math. Surveys**49**(1994), no. 1, 1–79. MR**1307130**, DOI 10.1070/RM1994v049n01ABEH002002 - W. K. Hayman,
*Multivalent functions*, 2nd ed., Cambridge Tracts in Mathematics, vol. 110, Cambridge University Press, Cambridge, 1994. MR**1310776**, DOI 10.1017/CBO9780511526268 - W. K. Hayman,
*Subharmonic functions. Vol. 2*, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR**1049148** - Olli Lehto,
*On the distribution of values of meromorphic functions of bounded characteristic*, Acta Math.**91**(1954), 87–112. MR**62226**, DOI 10.1007/BF02393427 - J. E. Littlewood,
*Lectures on the Theory of Functions*, Oxford University Press, 1944. MR**0012121** - Rolf Nevanlinna,
*Analytic functions*, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR**0279280**, DOI 10.1007/978-3-642-85590-0 - Robert Osserman,
*From Schwarz to Pick to Ahlfors and beyond*, Notices Amer. Math. Soc.**46**(1999), no. 8, 868–873. MR**1704258** - George Pólya and Gábor Szegő,
*Problems and theorems in analysis. I*, Corrected printing of the revised translation of the fourth German edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 193, Springer-Verlag, Berlin-New York, 1978. Series, integral calculus, theory of functions; Translated from the German by D. Aeppli. MR**580154** - S. Pouliasis,
*Equality cases for condenser capacity inequalities under symmetrization*. Preprint, 2010. - Thomas Ransford,
*Potential theory in the complex plane*, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR**1334766**, DOI 10.1017/CBO9780511623776 - Reinhold Remmert,
*Theory of complex functions*, Graduate Texts in Mathematics, vol. 122, Springer-Verlag, New York, 1991. Translated from the second German edition by Robert B. Burckel; Readings in Mathematics. MR**1084167**, DOI 10.1007/978-1-4612-0939-3 - Joel H. Shapiro,
*The essential norm of a composition operator*, Ann. of Math. (2)**125**(1987), no. 2, 375–404. MR**881273**, DOI 10.2307/1971314 - V. A. Shlyk,
*A uniqueness theorem for the symmetrization of arbitrary capacitors*, Sibirsk. Mat. Zh.**23**(1982), no. 2, 165–175, 217 (Russian). MR**652233** - Matti Vuorinen,
*Conformal geometry and quasiregular mappings*, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR**950174**, DOI 10.1007/BFb0077904

## Additional Information

**Dimitrios Betsakos**- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- MR Author ID: 618946
- Email: betsakos@math.auth.gr
- Received by editor(s): September 30, 2010
- Published electronically: March 28, 2011
- Communicated by: Mario Bonk
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**139**(2011), 4041-4052 - MSC (2010): Primary 30C80
- DOI: https://doi.org/10.1090/S0002-9939-2011-10954-7
- MathSciNet review: 2823049