The holomorphy conjecture for ideals in dimension two
HTML articles powered by AMS MathViewer
- by Ann Lemahieu and Lise Van Proeyen
- Proc. Amer. Math. Soc. 139 (2011), 3845-3852
- DOI: https://doi.org/10.1090/S0002-9939-2011-11186-9
- Published electronically: June 29, 2011
- PDF | Request permission
Abstract:
The holomorphy conjecture predicts that the topological zeta function associated to a polynomial $f \in \mathbb {C}[x_1,\ldots ,x_n]$ and an integer $d > 0$ is holomorphic unless $d$ divides the order of an eigenvalue of local monodromy of $f$. In this paper, we generalise the holomorphy conjecture to the setting of arbitrary ideals in $\mathbb {C}[x_1,\ldots ,x_n]$, and we prove it when $n=2$.References
- Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531–572. MR 1896232, DOI 10.1090/S0894-0347-02-00396-X
- Jan Denef, Report on Igusa’s local zeta function, Astérisque 201-203 (1991), Exp. No. 741, 359–386 (1992). Séminaire Bourbaki, Vol. 1990/91. MR 1157848
- J. Denef, Degree of local zeta functions and monodromy, Compositio Math. 89 (1993), no. 2, 207–216. MR 1255694
- J. Denef and F. Loeser, Caractéristiques d’Euler-Poincaré, fonctions zêta locales et modifications analytiques, J. Amer. Math. Soc. 5 (1992), no. 4, 705–720 (French). MR 1151541, DOI 10.1090/S0894-0347-1992-1151541-7
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Jun-ichi Igusa, $b$-functions and $p$-adic integrals, Algebraic analysis, Vol. I, Academic Press, Boston, MA, 1988, pp. 231–241. MR 992457
- Ann Lemahieu and Willem Veys, Zeta functions and monodromy for surfaces that are general for a toric idealistic cluster, Int. Math. Res. Not. IMRN 1 (2009), Art. ID rnn122, 11–62. MR 2471295, DOI 10.1093/imrn/rnn122
- F. Loeser, Fonctions d’Igusa $p$-adiques et polynômes de Bernstein, Amer. J. Math. 110 (1988), no. 1, 1–21 (French). MR 926736, DOI 10.2307/2374537
- Lise Van Proeyen and Willem Veys, Poles of the topological zeta function associated to an ideal in dimension two, Math. Z. 260 (2008), no. 3, 615–627. MR 2434472, DOI 10.1007/s00209-007-0291-4
- Lise Van Proeyen and Willem Veys, The monodromy conjecture for zeta functions associated to ideals in dimension two, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 4, 1347–1362 (English, with English and French summaries). MR 2722244, DOI 10.5802/aif.2557
- J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 332–364 (French). MR 737938
- Willem Veys, Holomorphy of local zeta functions for curves, Math. Ann. 295 (1993), no. 4, 635–641. MR 1214952, DOI 10.1007/BF01444907
Bibliographic Information
- Ann Lemahieu
- Affiliation: Departement Wiskunde, K. U. Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
- Address at time of publication: Université Lille 1, UFR de Mathématiques, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France
- Email: lemahieu.ann@gmail.com
- Lise Van Proeyen
- Affiliation: Departement Wiskunde, K. U. Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
- Email: lisevanproeyen@gmail.com
- Received by editor(s): May 16, 2008
- Received by editor(s) in revised form: May 6, 2009, and September 18, 2010
- Published electronically: June 29, 2011
- Additional Notes: This research was partially supported by the Fund of Scientific Research - Flanders (G.0318.06) and MEC PN I+D+I MTM2007-64704.
- Communicated by: Ted Chinburg
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 139 (2011), 3845-3852
- MSC (2010): Primary 14-XX
- DOI: https://doi.org/10.1090/S0002-9939-2011-11186-9
- MathSciNet review: 2823031