LANGLANDS RECIPROCITY FOR THE EVEN-DIMENSIONAL NONCOMMUTATIVE TORI

IGOR NIKOLAEV

(Communicated by Varghese Mathai)

Abstract. We conjecture an explicit formula for the higher-dimensional Dirichlet character; the formula is based on the K-theory of the so-called noncommutative tori. It is proved that our conjecture is true for the two-dimensional and one-dimensional (degenerate) noncommutative tori. In the second case, one gets a noncommutative analog of the Artin reciprocity law.

Introduction

The aim of this paper is to bring some evidence in favor of the following analog of the Langlands reciprocity [5]:

Conjecture 1 (Langlands conjecture for noncommutative tori). Let K be a finite extension of the rational numbers \mathbb{Q} with the Galois group $\text{Gal}(K/\mathbb{Q})$. For an irreducible representation $\sigma_{n+1} : \text{Gal}(K/\mathbb{Q}) \to \text{GL}_{n+1}(\mathbb{C})$, there exists a $2n$-dimensional noncommutative torus with real multiplication, A_{RM}^{2n}, such that $L(\sigma_{n+1}, s) \equiv L(A_{RM}^{2n}, s)$, where $L(\sigma_{n+1}, s)$ is the Artin L-function and $L(A_{RM}^{2n}, s)$ an L-function attached to the A_{RM}^{2n}. Moreover, A_{RM}^{2n} is the image of an n-dimensional abelian variety $V_n(K)$ under the (generalized) Teichmüller functor F_n.

For the notation and terminology we refer the reader to sections 1 and 3; the noncommutative torus A_{RM}^{2n} can be regarded as a substitute of the “automorphic cuspidal representation $\pi_{\sigma_{n+1}}$ of the group $\text{GL}(n+1)$” in terms of the Langlands theory. Roughly speaking, Conjecture 1 says, that the Galois extensions of the field of rational numbers come from the even-dimensional noncommutative tori with real multiplication. Note that the noncommutative tori are intrinsic to the problem, since they classify the irreducible (infinite-dimensional) representations of the Lie group $\text{GL}(n+1)$. Such representations are the heart of the Langlands program [5]. Our conjecture is supported by the following evidence.

Theorem 1. Conjecture 1 is true for $n = 1$ (resp., $n = 0$) and the K abelian extension of an imaginary quadratic field k (resp., the rational field \mathbb{Q}).

The structure of the paper is as follows. Minimal necessary notation is introduced in section 1, and a brief summary of the Teichmüller functor(s) is given in section 3. Theorem 1 is proved in section 2.

Received by the editors July 1, 2010 and, in revised form, October 7, 2010.

2010 Mathematics Subject Classification. Primary 11M55; Secondary 46L85.

Key words and phrases. Langlands program, noncommutative tori.

The author was partially supported by NSERC.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
1. Preliminaries

1.1. Noncommutative tori.

A. The k-dimensional noncommutative torus (4, 12). A noncommutative k-torus is the universal C*-algebra generated by k unitary operators u_1, \ldots, u_k. The operators do not commute with each other, but their commutators $u_i u_j u_k^{-1} u_l^{-1}$ are fixed scalar multiples $\exp(2\pi i \theta_{ij})$, $\theta_{ij} \in \mathbb{R}$, of the identity operator. The k-dimensional noncommutative torus, A^k_Θ, is defined by a skew symmetric real matrix $\Theta = (\theta_{ij})$, $1 \leq i, j \leq k$. Further, we think of the A^k_Θ as a noncommutative topological space whose algebraic K-theory yields $K_0(A^k_\Theta) \cong \mathbb{Z}^{2k-1}$ and $K_1(A^k_\Theta) \cong \mathbb{Z}^{2k-1}$. The canonical trace τ on the C*-algebra A^k_Θ defines a homomorphism from $K_0(A^k_\Theta)$ to the real line \mathbb{R}. Under the homomorphism, the image of $K_0(A^k_\Theta)$ is a \mathbb{Z}-module whose generators $\tau = (\tau_i)$ are polynomials in θ_{ij}. (More precisely, $\tau = \exp(\Theta)$, where the exterior algebra of θ_{ij} is nilpotent.) Recall that the C*-algebras A and A' are said to be stably isomorphic (Morita equivalent) if $A \otimes K \cong A' \otimes K$ for the C*-algebra K of compact operators. Such an isomorphism indicates that the C*-algebras are homeomorphic as noncommutative topological spaces. By a result of Rieffel and Schwarz [13], the noncommutative tori A^k_Θ and $A^k_{\Theta'}$ are stably isomorphic if the matrices Θ and Θ' belong to the same orbit of a subgroup $SO(k, k \mid \mathbb{Z})$ of the group $GL_{2k}(\mathbb{Z})$, which acts on Θ by the formula

$$
\Theta' = (A\Theta + B) / (C\Theta + D),
$$

where $(A, B, C, D) \in GL_{2k}(\mathbb{Z})$ and the matrices $A, B, C, D \in GL_k(\mathbb{Z})$ satisfy the conditions

$$
A^t D + C^t B = I, \quad A^t C + C^t A = 0 = B^t D + D^t B.
$$

(Here I is the unit matrix, and t at the upper right of a matrix means a transpose of the matrix.) The group $SO(k, k \mid \mathbb{Z})$ can be equivalently defined as a subgroup of the group $SO(k, k \mid \mathbb{R})$ consisting of linear transformations of the space \mathbb{R}^{2k} which preserve the quadratic form $x_1 x_{k+1} + x_2 x_{k+2} + \cdots + x_k x_{2k}$. The canonical trace τ on the \mathbb{C}^k unitary operators does not commute with each other, but their commutators $\exp(2\pi i \theta_{ij})$, $\theta_{ij} \in \mathbb{R}$, of the identity operator.

B. The even-dimensional normal tori. Further, we restrict ourselves to the case $k = 2n$ (the even-dimensional noncommutative tori). It is known that by the orthogonal linear transformations every (generic) real even-dimensional skew symmetric matrix can be brought to the normal form

$$
\Theta_0 = \begin{pmatrix}
0 & \theta_1 & & \\
-\theta_1 & 0 & & \\
& & \ddots & \\
& & & 0 & \theta_n \\
& & & -\theta_n & 0
\end{pmatrix},
$$

where $\theta_i > 0$ are linearly independent over \mathbb{Q}. We shall consider the noncommutative torus $A^{2n}_{\Theta_0}$, given by the matrix (2); we refer to the family as a normal family. Recall that any noncommutative torus has a canonical trace τ which defines a homomorphism from $K_0(A^{2n}_{\Theta_0}) \cong \mathbb{Z}^{2n-1}$ to \mathbb{R}. It follows from [4] that the image of $K_0(A^{2n}_{\Theta_0})$ under the homomorphism has a basis, given by the formula

$$
\tau(K_0(A^{2n}_{\Theta_0})) = \mathbb{Z} + \theta_1 \mathbb{Z} + \cdots + \theta_n \mathbb{Z} + \sum_{i=n+1}^{2n-1} p_i(\theta) \mathbb{Z},
$$

where $p_i(\theta) \in \mathbb{Z}[1, \theta_1, \ldots, \theta_n]$.

C. The real multiplication (3). The noncommutative torus $A^{2n}_{\Theta_0}$ is said to have a real multiplication if the endomorphism ring $\text{End} (\tau(K_0(A^{2n}_{\Theta_0})))$ exceeds the trivial ring \mathbb{Z}. Since any endomorphism of the \mathbb{Z}-module $\tau(K_0(A^{2n}_{\Theta_0}))$ is the...
multiplication by a real number, it is easy to deduce that all the entries of $\Theta = (\theta_{ij})$ are algebraic integers. (Indeed, the endomorphism is described by an integer matrix which defines a polynomial equation involving θ_{ij}.) Thus, the noncommutative tori with real multiplication are a countable subset of all k-dimensional tori; any element of the set we shall denote by A_{RM}^k. Notice that for the even-dimensional noncommutative tori, the polynomials $p_i(\theta)$ produce the algebraic integers in the extension of \mathbb{Q} by θ_i. Any such integer is a linear combination (over \mathbb{Z}) of the θ_i. Thus, the trace formula reduces to $\tau(K_0(A_{RM}^{2n})) = \mathbb{Z} + \theta_1\mathbb{Z} + \cdots + \theta_n\mathbb{Z}$.

1.2. L-function of noncommutative tori. We consider even-dimensional noncommutative tori with real multiplication. Denote by A a positive integer matrix whose normalized Perron-Frobenius eigenvector coincides with the vector $\theta = (1, \theta_1, \ldots, \theta_n)$ such that A is not a power of a positive integer matrix. In other words, $A\theta = \lambda A\theta$, where $A \in GL_{n+1}(\mathbb{Z})$ and λA is the corresponding eigenvalue. (Explicitly, A can be obtained from vector θ as the matrix of minimal period of the Jacobi-Perron continued fraction of θ [2]). Let p be a prime number; take the matrix A^p and consider its characteristic polynomial $char(A^p) = x^{n+1} + a_1x^n + \cdots + a_nx + 1$. We introduce the following notation:

$$L_{p}^{n+1} := \begin{pmatrix} a_1 & a_2 & \cdots & a_n & p \\ -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \end{pmatrix}. \tag{3}$$

A local zeta function of the A_{RM}^{2n} is defined as the reciprocal of $det(I_{n+1} - L_{p}^{n+1}z)$; in other words,

$$\zeta_p(A_{RM}^{2n}, z) := \frac{1}{1 - a_1z + a_2z^2 - \cdots - a_nz^n + p2^{n+1}}, \quad z \in \mathbb{C}. \tag{4}$$

An L-function of A_{RM}^{2n} is a product of the local zeros over all but a finite number, of primes $L(A_{RM}^{2n}, s) = \prod_p \{ trz(A) - (n+1)z \} \zeta_p(A_{RM}^{2n}, p^{-s})$, $s \in \mathbb{C}$.

Remark 1. It will be shown that for $n = 0$ and $n = 1$ formula (4) fits Conjecture [1]. For $n \geq 2$ it is an open problem based on an observation that the crossed product $A_{RM}^{2n} \rtimes L_p^{n+1}$ is a proper noncommutative analog of the (higher-dimensional) Tate module, where the matrix L_{p}^{n+1} corresponds to the Frobenius automorphism of the module [13], p. 172.

2. Proof of Theorem [1]

2.1. Case $n = 1$. Each one-dimensional abelian variety is a nonsingular elliptic curve. Choose this curve to have complex multiplication by (an order in) the imaginary quadratic field k and denote such a curve by E_{CM}. Then, by theory of complex multiplication, the (maximal) abelian extension of k coincides with the minimal field of definition of the curve E_{CM}, i.e. $E_{CM} \cong E(K)$ [14]. The Teichmüller functor $F := F_1$ maps $E(K)$ into a two-dimensional noncommutative torus with real multiplication (section 3); we shall denote the torus by A_{RM}^{2}. To calculate the corresponding L-function $L(A_{RM}^{2}, s)$, let A be a 2×2 positive integer matrix whose normalized Perron-Frobenius eigenvector is $(1, \theta_1)$. For a prime...
Let E_{CM} be an elliptic curve with complex multiplication by an order R in the ring of integers of the imaginary quadratic field k. Then $A_{RM} = F(E_{CM})$ is a noncommutative torus with real multiplication by the order \mathfrak{R} in the ring of integers of a real quadratic field \mathfrak{r} (section 3). Let $tr (\alpha) = \alpha + \bar{\alpha}$ be the trace function of a (quadratic) algebraic number field.
Recall that each \(b \) is a real quadratic integer with index \(\xi \). The fundamental units of \(\alpha \) are \((a + d, 1, -1, 0) \) when \(n = c = -ad \). To calculate \(\alpha \) in \(\mathfrak{R} \) corresponding to \(a \), we apply formula \((5) \), which gives us

\[
F : \left(\begin{array}{cc} a + d & c - ad \\ 1 & 0 \end{array} \right) \mapsto \left(\begin{array}{cc} a + d & c - ad \\ -1 & 0 \end{array} \right).
\]

In a given base \(\{1, n\} \) of \(\mathbb{Z} + n \mathbb{Z} \), one can write \(\omega \lambda_1 = (a + d) \lambda_1 + (c - ad) \lambda_2 \) and \(\omega \lambda_2 = -\lambda_1 \). It is an easy exercise to verify that \(\omega \) is a real quadratic integer with \(\text{tr} (\omega) = a + d \); the latter coincides with \(\text{tr} (\alpha) \).

Let \(\omega \in \mathfrak{R} \) be an endomorphism of the pseudo-lattice \(\mathbb{Z} + n \mathbb{Z} \) of degree \(\deg (\omega) := \omega \bar{\omega} = n \). The endomorphism maps the pseudo-lattice to a sub-lattice of index \(n \). Any such endomorphism has a form \(\mathbb{Z} + (n \theta) \mathbb{Z} \) \([3]\), p. 131. Let us calculate \(\omega \) in a base \(\{1, n \theta \} \) when it is given by the matrix \((a + d, c - ad, -1, 0) \). In this case \(n = c = -ad \) and \(\omega \) induces an automorphism \(\omega^* = (a + d, 1, -1, 0) \) of the sublattice \(\mathbb{Z} + (n \theta) \mathbb{Z} \) according to the matrix equation

\[
\begin{pmatrix} a + d & n \\ -1 & 0 \end{pmatrix} \left(\begin{array}{c} 1 \\ n \theta \end{array} \right) = \left(\begin{array}{c} a + d \\ -1 \end{array} \right).
\]

Thus, one gets a map \(\rho : \mathfrak{R} \to \mathfrak{R}^* \) given by the formula \(\omega = (a + d, n, -1, 0) \mapsto \omega^* = (a + d, 1, -1, 0) \), where \(\mathfrak{R}^* \) is the group of units of \(\mathfrak{R} \). Since \(\text{tr} (\omega^*) = a + d = \text{tr} (\omega) \) and \(\omega^* = \rho (\omega) \), one gets the following:

Corollary 2. For all \(\omega \in \mathfrak{R} \), it holds that \(\text{tr} (\omega) = \text{tr} (\rho (\omega)) \).

Note that \(\mathfrak{R}^* = \{ \pm \varepsilon^k \mid k \in \mathbb{Z} \} \), where \(\varepsilon > 1 \) is a fundamental unit of the order \(\mathfrak{R} \subseteq \mathcal{O}_k \). Here \(\mathcal{O}_k \) means the ring of integers of a real quadratic field \(\mathbb{K} = \mathbb{Q} (\theta) \).

Choosing a sign in front of \(\varepsilon^k \), the following index map is defined as \(\iota : \mathfrak{R} \to \mathfrak{R}^* \to \mathbb{Z} \). Let \(\alpha \in \mathfrak{R} \) and \(\deg (\alpha) = -n \). To calculate the \(\iota (\alpha) \), recall some notation from Hasse \([6]\), §16.5.C. Let \(\mathbb{Z} / n \mathbb{Z} \) be a cyclic group of order \(n \). For brevity, let \(I = \mathbb{Z} + n \mathbb{Z} \) be a pseudo-lattice and \(I_n = \mathbb{Z} + (n \theta) \mathbb{Z} \) be its sublattice of index \(n \). The fundamental units of \(I \) and \(I_n \) are \(\varepsilon \) and \(\varepsilon_n \), respectively. By \(\mathfrak{G}_n \) one understands a subgroup of \(\mathbb{Z} / n \mathbb{Z} \) of prime residue classes \(\text{mod} \ n \). The \(\mathfrak{g}_n \subset \mathfrak{G}_n \) is a subgroup of the nonzero divisors of the \(\mathfrak{G}_n \). Finally, let \(g_n \) be the smallest number such that it divides \(|\mathfrak{G}_n / \mathfrak{g}_n| \) and \(\varepsilon^n \in I_n \). (The notation drastically simplifies in the case when \(n = p \) is a prime number.)

Lemma 4. \(\iota (\alpha) = g_n \).

Proof. Notice that \(\deg (\omega) = -\deg (\alpha) = n \), where \(\omega = F (\alpha) \). Then the map \(\rho \) defines \(I \) and \(I_n \); one can now apply the calculation of \([6]\), pp. 296-300. Namely, Theorem XIII’ on p. 298 yields the required result. (We kept the notation of the original.)

Corollary 3. \(\iota (\psi_{E (K)} (\mathfrak{P})) = p \).
This paper has been retracted by the author
2.2. Case \(n = 0 \). When \(n = 0 \), one gets a one-dimensional (degenerate) noncommutative torus. Such an object, \(\mathcal{A}_Q \), can be obtained from the 2-dimensional torus \(\mathcal{A}_Q^2 \) by forcing \(\theta = p/q \in \mathbb{Q} \) to be a rational number (hence our notation). One can always assume \(\theta = 0 \) and, thus, \(\tau(K_0(\mathcal{A}_Q)) = \mathbb{Z} \). To calculate matrix \(L_1^p \), notice that the group of automorphisms of the \(\mathbb{Z} \)-module \(\tau(K_0(\mathcal{A}_Q)) = \mathbb{Z} \) is trivial, i.e., it is a multiplication by \(\pm 1 \); hence our \(1 \times 1 \) (real) matrix \(A \) is either 1 or \(-1\). Since \(A \) must be positive, we conclude that \(A = 1 \). However, \(A = 1 \) is not a prime matrix if one allows the complex entries. Indeed, for any \(N > 1 \) matrix \(A' = \zeta_N \) gives us \(A = (A')^N \), where \(\zeta_N = e^{2\pi i/N} \) is the \(N \)-th root of unity. Therefore, \(A = \zeta_N \) and \(L_1^p = \text{tr} \ (A^p) = A^p = \zeta_N^p \). A degenerate noncommutative torus, corresponding to the matrix \(A = \zeta_N \), shall be written as \(\mathcal{A}_Q^N \). In turn, such a torus is the image (under the Teichmüller functor) of a zero-dimensional abelian variety, which we denote by \(V_0^N \). Suppose that \(Gal(\mathbb{K}/\mathbb{Q}) \) is abelian and let \(\sigma : Gal(\mathbb{K}/\mathbb{Q}) \to \mathbb{C}^\times \) be a homomorphism. Then, by the Artin reciprocity \([1]\), there exists an integer \(N \) and a Dirichlet character \(\chi_\sigma : (\mathbb{Z}/N\mathbb{Z})^\times \to \mathbb{C}^\times \) such that \(\sigma(F_p) = \chi_\sigma(p) \); choose our zero-dimensional variety to be \(V_0^N \). In view of the notation, \(L_1^p = \zeta_N^p ; \) on the other hand, it is verified directly that \(\zeta_N^p = e^{2\pi i p/N} = \chi_\sigma(p) \). Thus, \(L_1^p = \chi_\sigma(p) \). To obtain a local zeta function, we substitute \(a_1 = L_1^p \) into the formula (4) and obtain

\[
\zeta_p(\mathcal{A}_Q^N,s) = \frac{1}{1 - \chi_\sigma(p)^s},
\]

where \(\chi_\sigma(p) \) is the Dirichlet character. Therefore, \(L(\mathcal{A}_Q^N,s) \equiv L(s,\chi_\sigma) \) is the Dirichlet \(L \)-series. Such a series, by construction, coincides with the Artin \(L \)-series of the representation \(\sigma : Gal(\mathbb{K}/\mathbb{Q}) \to \mathbb{C}^\times \). Case \(n = 0 \) of Theorem 2 follows.

3. Teichmüller functors

Denote by \(\Lambda \) a lattice of rank \(2n \). Recall that an \(n \)-dimensional (principally polarized) abelian variety, \(V_n \), is the complex torus \(\mathbb{C}^n/\Lambda \), which admits an embedding into a projective space \([9]\).

3.1. Abelian varieties of dimension \(n = 1 \).

A. Basic example. Let \(n = 1 \) and consider the complex torus \(V_1 \cong \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}) \); it always embeds (via the Weierstrass \(\wp \) function) into a projective space as a non-singular elliptic curve. Let \(\mathbb{H} = \{ \tau = x + iy \in \mathbb{C} \mid y > 0 \} \) be the upper half-plane and \(\partial \mathbb{H} = \{ \theta \in \mathbb{R} \mid y = 0 \} \) its (topological) boundary. We identify \(V_1(\tau) \) with the points of \(\mathbb{H} \) and \(\mathcal{A}_Q^2 \) with the points of \(\partial \mathbb{H} \). Let us show that the boundary is natural. The latter means that the action of the modular group \(SL_2(\mathbb{Z}) \) extends to the boundary, where it coincides with the stable isomorphisms of tori. Indeed, conditions (4) are equivalent to

\[
A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, \quad B = \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & -c \\ c & 0 \end{pmatrix}, \quad D = \begin{pmatrix} d & 0 \\ 0 & d \end{pmatrix},
\]

where \(ad - bc = 1 \), \(a, b, c, d \in \mathbb{Z} \) and \(\Theta' = (A\Theta + B)/(C\Theta + D) = (0, a\Theta + b)/(c\Theta + d) \). Therefore, \(\Theta' = (a\Theta + b)/(c\Theta + d) \) for a matrix \((a, b, c, d) \in SL_2(\mathbb{Z}) \). Thus, the action of \(SL_2(\mathbb{Z}) \) extends to the boundary \(\partial \mathbb{H} \), where it induces stable isomorphisms of the noncommutative tori.

B. The Teichmüller functor \([10]\). There exists a continuous map \(F_1 : \mathbb{H} \to \partial \mathbb{H} \), which sends isomorphic complex tori to the stably isomorphic noncommutative
tori. An exact result is this: Let \(\phi \) be a closed form on the torus whose trajectories define a measured foliation. According to the Hubbard-Masur theorem (applied to the complex tori), this foliation corresponds to a point \(\tau \in \mathbb{H} \). The map \(F_1 : \mathbb{H} \to \partial \mathbb{H} \) is defined by the formula \(\tau \mapsto \theta = \int_{\gamma_2} \phi / \int_{\gamma_1} \phi \), where \(\gamma_1 \) and \(\gamma_2 \) are generators of the first homology of the torus. The following is true: (i) \(\mathbb{H} = \partial \mathbb{H} \times (0, \infty) \) is a trivial fiber bundle whose projection map coincides with \(F_1 \); (ii) \(F_1 \) is a functor which sends isomorphic complex tori to the stably isomorphic noncommutative tori. We shall refer to \(F_1 \) as the Teichmüller functor. Recall that the complex torus \(\mathbb{C}/(\mathbb{Z}+\tau \mathbb{Z}) \) is said to have a complex multiplication if the endomorphism ring of the lattice \(\Lambda = \mathbb{Z}+\tau \mathbb{Z} \) exceeds the trivial ring \(\mathbb{Z} \). The complex multiplication happens if and only if \(\tau \) is an algebraic number in an imaginary quadratic field. The following is true: \(F_1(V_1^{CM}) = A_{RM}^2 \), where \(V_1^{CM} \) is a torus with complex multiplication.

3.2. Abelian varieties of dimension \(n \geq 1 \).

A. The Siegel upper half-space \((\mathbb{H}_n)\). The space

\[
\mathbb{H}_n := \{ \tau = (\tau_i) \in \mathbb{C}^{n(n+1)} \mid \text{Im} (\tau_i) > 0 \}
\]

of symmetric \(n \times n \) matrices with complex entries is called a Siegel upper half-space. The points of \(\mathbb{H}_n \) are one-to-one with the \(n \)-dimensional principally polarized abelian varieties. Let \(Sp(2n, \mathbb{R}) \) be the symplectic group. It acts on \(\mathbb{H}_n \) by the linear fractional transformations \(\tau \mapsto \tau' = (a\tau + b)/(c\tau + d) \), where \((a, b, c, d) \in Sp(2n, \mathbb{R}) \) and \(a, b, c, d \) are the \(n \times n \) matrices with real entries. The abelian varieties \(V_n \) and \(V'_n \) are isomorphic if and only if \(\tau \) and \(\tau' \) belong to the same orbit of the group \(Sp(2n, \mathbb{Z}) \); the action is discontinuous on \(\mathbb{H}_n \). Denote by \(\Sigma_{2n} \) a space of the \(2n \)-dimensional normal noncommutative tori. The following lemma is critical.

Lemma 7. \(Sp(2n, \mathbb{R}) \subseteq O(n, n|\mathbb{R}) \).

Proof. (i) The group \(O(n, n|\mathbb{R}) \) can be defined as a subgroup of \(GL_2(\mathbb{R}) \) which preserves the quadratic form \(f(x_1, \ldots, x_{2n}) = x_1x_{n+1} + x_2x_{n+2} + \cdots + x_nx_{2n} \). We shall denote \(u_i = x_1 \) for \(1 \leq i \leq n \) and \(v_i = x_i \) for \(n+1 \leq i \leq 2n \). Consider the following skew symmetric bilinear form \(q(u, v) = u_1v_{n+1} + \cdots + u_nv_{2n} - u_{n+1}v_1 - \cdots - u_{2n}v_n \), where \(u, v \in \mathbb{R}^{2n} \). It is known that each linear substitution \(g \in Sp(2n, \mathbb{R}) \) preserves the form \(q(u, v) \). Since \(q(u, v) = f(x_1, \ldots, x_{2n}) - u_{n+1}v_1 - \cdots - u_{2n}v_n \), one concludes that \(g \) also preserves the form \(f(x_1, \ldots, x_{2n}) \), i.e. \(g \in O(n, n|\mathbb{R}) \). It is easy to see that the inclusion is proper except in the case \(n = 1 \), i.e. when \(Sp(2, \mathbb{R}) \cong O(1, 1|\mathbb{R}) \cong SL_2(\mathbb{R}) \). The lemma follows.

(ii) We wish to give a second proof of this important fact, which is based on the explicit formulas for the block matrices \(A, B, C \) and \(D \). The fact that a symplectic linear transformation preserves the skew symmetric bilinear form \(q(u, v) \) can be written in a matrix form:

\[
\left(\begin{array}{cc} a & b \\ c & d \end{array} \right)^t \left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array} \right) \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array} \right),
\]

where \(t \) is the transpose of a matrix. Performing the matrix multiplication, one gets the matrix identities \(ab - cd = I \), \(ac - db = 0 = b^t + c^t \). Let us show that these identities imply the Rieffel-Schwarz identities imposed on the matrices.
A, B, C and D. Indeed, in view of the formulas (11), the Rieffel-Schwarz identities can be written as

\[
\begin{bmatrix}
 a^t & 0 \\
 0 & a^t
\end{bmatrix}
\begin{bmatrix}
 d & 0 \\
 0 & d
\end{bmatrix}
+ \begin{bmatrix}
 0 & c^t \\
 -c^t & 0
\end{bmatrix}
\begin{bmatrix}
 0 & b \\
 -b & 0
\end{bmatrix}
= \begin{bmatrix}
 I & 0 \\
 0 & I
\end{bmatrix}.
\]

(13)

A step-by-step matrix multiplication in (13) shows that the identities \(a^t d - c^t b = I,\ a^t c^t - c^t a = 0 = b^t d - d^t b\) imply the identities (13). (Beware: the operation is not commutative.) Thus, any symplectic transformation satisfies the Rieffel-Schwarz identities, i.e. belongs to the group \(O(n,n;\mathbb{R})\). Lemma 7 follows. \(\square\)

B. The generalized Teichmüller functors. By Lemma 7, the action of \(Sp(2n,\mathbb{Z})\) on the \(\mathbb{H}_n\) extends to the \(\Sigma_{2n}\), where it acts by stable isomorphisms of the noncommutative tori. Thus, \(\Sigma_{2n}\) is a natural boundary of the Siegel upper half-space \(\mathbb{H}_n\). However, unless \(n = 1\), the \(\Sigma_{2n}\) is not a topological boundary of \(\mathbb{H}_n\). Indeed, \(dim_{\mathbb{Z}}(\mathbb{H}_n) = n(n+1)\) and \(dim_{\mathbb{R}}(\mathbb{H}_n) = n^2 + n - 1\), while \(dim_{\mathbb{Z}}(\Sigma_{2n}) = n\). Thus, \(\Sigma_{2n}\) is an \(n\)-dimensional subspace of the topological boundary of \(\mathbb{H}_n\). This subspace is everywhere dense in \(\partial \mathbb{H}_n\), since the \(Sp(2n,\mathbb{Z})\)-orbit of an element of \(\Sigma_{2n}\) is everywhere dense in \(\partial \mathbb{H}_n\) (13). A (conjectural) continuous map \(F_n : \mathbb{H}_n \to \Sigma_{2n}\) shall be called a **generalized Teichmüller functor**. The \(F_n\) has the following properties: (i) it sends each pair of isomorphic abelian varieties to a pair of the stably isomorphic even-dimensional normal tori; (ii) the range of \(F_n\) on the abelian varieties with complex multiplication consists of the noncommutative tori with real multiplication. As explained, such a functor has been constructed only in the case \(n = 1\). The difficulties in higher dimensions are due to the lack (so far) of a proper Teichmüller theory for the abelian varieties of dimension \(n \geq 2\).

ACKNOWLEDGMENTS

The author is grateful to M. A. Rieffel for interest and advice. The referee’s help is kindly acknowledged.

REFERENCES

This paper has been retracted by the author.