On the connectedness of the branch locus of the moduli space of Riemann surfaces of low genus
HTML articles powered by AMS MathViewer
- by Gabriel Bartolini and Milagros Izquierdo
- Proc. Amer. Math. Soc. 140 (2012), 35-45
- DOI: https://doi.org/10.1090/S0002-9939-2011-10881-5
- Published electronically: May 9, 2011
- PDF | Request permission
Abstract:
Let $g$ be an integer $\ge 3$ and let $\mathcal {B}_g = \{X\in \mathcal {M}_g | Aut(X)\neq 1_d \}$, where $\mathcal {M}_g$ denotes the moduli space of compact Riemann surfaces of genus $g$. Using uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space, we prove that the subloci corresponding to Riemann surfaces with automorphism groups isomorphic to cyclic groups of order 2 and 3 belong to the same connected component. We also prove the connectedness of $\mathcal {B}_g$ for $g=5,6,7$ and $8$ with the exception of the isolated points given by Kulkarni.References
- Gabriel Bartolini, Antonio F. Costa, Milagros Izquierdo, and Ana M. Porto, On the connectedness of the branch locus of the moduli space of Riemann surfaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 104 (2010), no. 1, 81–86 (English, with English and Spanish summaries). MR 2666443, DOI 10.5052/RACSAM.2010.08
- S. Allen Broughton, The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups, Topology Appl. 37 (1990), no. 2, 101–113. MR 1080344, DOI 10.1016/0166-8641(90)90055-7
- S. Allen Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1991), no. 3, 233–270. MR 1090743, DOI 10.1016/0022-4049(91)90021-S
- S. Allen Broughton and Aaron Wootton, Finite abelian subgroups of the mapping class group, Algebr. Geom. Topol. 7 (2007), 1651–1697. MR 2366175, DOI 10.2140/agt.2007.7.1651
- E. Bujalance, F. J. Cirre, J. M. Gamboa, and G. Gromadzki, On symmetries of compact Riemann surfaces with cyclic groups of automorphisms, J. Algebra 301 (2006), no. 1, 82–95. MR 2230321, DOI 10.1016/j.jalgebra.2006.03.019
- E. Bujalance, F. J. Cirre, M. D. E. Conder, On full automorphism groups of Riemann surfaces, preprint.
- José A. Bujalance, Antonio F. Costa, and Ana M. Porto, On the connectedness of the locus of real elliptic-hyperelliptic Riemann surfaces, Internat. J. Math. 20 (2009), no. 8, 1069–1080. MR 2554734, DOI 10.1142/S0129167X09005650
- José A. Bujalance, Antonio F. Costa, and Ana M. Porto, On the topological types of symmetries of elliptic-hyperelliptic Riemann surfaces, Israel J. Math. 140 (2004), 145–155. MR 2054842, DOI 10.1007/BF02786630
- José A. Bujalance, Antonio F. Costa, and Ana M. Porto, Topological types of symmetries of elliptic-hyperelliptic Riemann surfaces and an application to moduli spaces, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 1, 69–72 (English, with English and Spanish summaries). MR 2036744
- A. Costa, M. Izquierdo, On the connectedness of the branch locus of the moduli space of Riemann surfaces of genus 4, Glasgow Math. J. 52 (2010), 401-408.
- Antonio F. Costa and Milagros Izquierdo, On the connectedness of the locus of real Riemann surfaces, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 341–356. MR 1922193
- A. F. Costa and M. Izquierdo, On the locus of real algebraic curves, Atti Sem. Mat. Fis. Univ. Modena 49 (2001), no. suppl., 91–107. Dedicated to the memory of Professor M. Pezzana (Italian). MR 1881092
- Antonio F. Costa and Milagros Izquierdo, Maximal order of automorphisms of trigonal Riemann surfaces, J. Algebra 323 (2010), no. 1, 27–31. MR 2564826, DOI 10.1016/j.jalgebra.2009.09.041
- A. Costa, M. Izquierdo, On the existence of components of dimension one in the branch loci of moduli spaces of Riemann surfaces, preprint.
- Antonio F. Costa and Hugo Parlier, Applications of a theorem of Singerman about Fuchsian groups, Arch. Math. (Basel) 91 (2008), no. 6, 536–543. MR 2465872, DOI 10.1007/s00013-008-2817-3
- Ernesto Girondo and Gabino González-Diez, On the structure of the Whittaker sublocus of the moduli space of algebraic curves, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 2, 337–346. MR 2218156, DOI 10.1017/S0308210500004583
- W. J. Harvey, On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387–399. MR 297994, DOI 10.1090/S0002-9947-1971-0297994-0
- Hideyuki Kimura, Classification of automorphism groups, up to topological equivalence, of compact Riemann surfaces of genus 4, J. Algebra 264 (2003), no. 1, 26–54. MR 1980684, DOI 10.1016/S0021-8693(03)00138-8
- Akikazu Kuribayashi and Hideyuki Kimura, Automorphism groups of compact Riemann surfaces of genus five, J. Algebra 134 (1990), no. 1, 80–103. MR 1068416, DOI 10.1016/0021-8693(90)90212-7
- Ravi S. Kulkarni, Isolated points in the branch locus of the moduli space of compact Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), no. 1, 71–81. MR 1127697, DOI 10.5186/aasfm.1991.1614
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291
- David Singerman, Subgroups of Fuschian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319–323. MR 281805, DOI 10.1112/blms/2.3.319
- David Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29–38. MR 322165, DOI 10.1112/jlms/s2-6.1.29
Bibliographic Information
- Gabriel Bartolini
- Affiliation: Matematiska institutionen, Linköpings Universitet, 581 83 Linköping, Sweden
- Email: gabar@mai.liu.se
- Milagros Izquierdo
- Affiliation: Matematiska institutionen, Linköpings Universitet, 581 83 Linköping, Sweden
- MR Author ID: 321165
- ORCID: 0000-0002-9557-9566
- Email: milagros.izquierdo@liu.se
- Received by editor(s): December 17, 2009
- Received by editor(s) in revised form: November 2, 2010
- Published electronically: May 9, 2011
- Additional Notes: The second author was partially supported by the Swedish Research Council (VR)
- Communicated by: Martin Lorenz
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 35-45
- MSC (2010): Primary 14Hxx, 30F10; Secondary 57M50
- DOI: https://doi.org/10.1090/S0002-9939-2011-10881-5
- MathSciNet review: 2833515