Infinite sequences of mutually non-conjugate surface braids representing same surface-links
HTML articles powered by AMS MathViewer
- by Masahide Iwakiri
- Proc. Amer. Math. Soc. 140 (2012), 357-366
- DOI: https://doi.org/10.1090/S0002-9939-2011-10893-1
- Published electronically: May 25, 2011
- PDF | Request permission
Abstract:
We give an infinite sequence of mutually non-conjugate surface braids with same degree representing the trivial surface-link with at least two components and a pair of non-conjugate surface braids with same degree representing a spun $(2,t)$-torus knot for $t\geq 3$. To give these examples, we introduce new invariants of conjugacy classes of surface braids via colorings by Alexander quandles or core quandles of groups.References
- J. Scott Carter and Masahico Saito, Braids and movies, J. Knot Theory Ramifications 5 (1996), no. 5, 589–608. MR 1414089, DOI 10.1142/S0218216596000345
- Thomas Fiedler, A small state sum for knots, Topology 32 (1993), no. 2, 281–294. MR 1217069, DOI 10.1016/0040-9383(93)90020-V
- E. Fukunaga, An infinite sequence of conjugacy classes in the $4$-braid group representing a torus link of type $(2,k)$, preprint.
- Isao Hasegawa, A certain linear representation of the classical braid group and its application to surface braids, Math. Proc. Cambridge Philos. Soc. 141 (2006), no. 2, 287–301. MR 2265876, DOI 10.1017/S0305004106009546
- Fujitsugu Hosokawa and Akio Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka Math. J. 16 (1979), no. 1, 233–248. MR 527028
- Masahide Iwakiri, The lower bound of the $w$-indices of surface links via quandle cocycle invariants, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1189–1210. MR 2563726, DOI 10.1090/S0002-9947-09-04769-2
- Seiichi Kamada, A characterization of groups of closed orientable surfaces in $4$-space, Topology 33 (1994), no. 1, 113–122. MR 1259518, DOI 10.1016/0040-9383(94)90038-8
- Seiichi Kamada, Alexander’s and Markov’s theorems in dimension four, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 1, 64–67. MR 1254074, DOI 10.1090/S0273-0979-1994-00505-1
- S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications 5 (1996), no. 4, 517–529. MR 1406718, DOI 10.1142/S0218216596000308
- Seiichi Kamada, Braid and knot theory in dimension four, Mathematical Surveys and Monographs, vol. 95, American Mathematical Society, Providence, RI, 2002. MR 1900979, DOI 10.1090/surv/095
- H. R. Morton, An irreducible $4$-string braid with unknotted closure, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 2, 259–261. MR 691995, DOI 10.1017/S0305004100060540
- Reiko Shinjo, An infinite sequence of non-conjugate 4-braids representing the same knot of braid index 4, Intelligence of low dimensional topology 2006, Ser. Knots Everything, vol. 40, World Sci. Publ., Hackensack, NJ, 2007, pp. 293–297. MR 2371738, DOI 10.1142/9789812770967_{0}037
- Reiko Shinjo, Non-conjugate braids whose closures result in the same knot, J. Knot Theory Ramifications 19 (2010), no. 1, 117–124. MR 2640995, DOI 10.1142/S0218216510007735
- A. Stoimenow, Lie groups, Burau representation, and non-conjugate braids with the same closure link, preprint.
- A. Stoimenow, The density of Lawrence-Krammer and non-conjugate braid representations of links, preprint arXiv:0809.0033.
- Kokoro Tanaka, A note on CI-moves, Intelligence of low dimensional topology 2006, Ser. Knots Everything, vol. 40, World Sci. Publ., Hackensack, NJ, 2007, pp. 307–314. MR 2371740, DOI 10.1142/9789812770967_{0}039
- O. Ya. Viro, Lecture given at Osaka City University, September, 1990.
Bibliographic Information
- Masahide Iwakiri
- Affiliation: Graduate School of Science, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585, Japan
- Address at time of publication: Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga City, Saga, 840-8502, Japan
- Email: iwakiri@sci.osaka-cu.ac.jp, iwakiri@ms.saga-u.ac.jp
- Received by editor(s): July 16, 2010
- Received by editor(s) in revised form: November 11, 2010, and November 12, 2010
- Published electronically: May 25, 2011
- Communicated by: Daniel Ruberman
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 357-366
- MSC (2010): Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9939-2011-10893-1
- MathSciNet review: 2833546