Bounding the first Hilbert coefficient
HTML articles powered by AMS MathViewer
- by Krishna Hanumanthu and Craig Huneke
- Proc. Amer. Math. Soc. 140 (2012), 109-117
- DOI: https://doi.org/10.1090/S0002-9939-2011-11021-9
- Published electronically: May 20, 2011
- PDF | Request permission
Abstract:
This paper gives new bounds on the first Hilbert coefficient of an ideal of finite colength in a Cohen-Macaulay local ring. The bound given is quadratic in the multiplicity of the ideal. We compare our bound to previously known bounds and give examples to show that at least in some cases it is sharp. The techniques come largely from work of Elias, Rossi, Valla, and Vasconcelos.References
- Paul Eakin and Avinash Sathaye, Prestable ideals, J. Algebra 41 (1976), no. 2, 439–454. MR 419428, DOI 10.1016/0021-8693(76)90192-7
- Juan Elias, On the first normalized Hilbert coefficient, J. Pure Appl. Algebra 201 (2005), no. 1-3, 116–125. MR 2158750, DOI 10.1016/j.jpaa.2004.12.044
- Juan Elias, Upper bounds of Hilbert coefficients and Hilbert functions, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 87–94. MR 2431640, DOI 10.1017/S0305004108001138
- Craig Huneke, Complete ideals in two-dimensional regular local rings, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 325–338. MR 1015525, DOI 10.1007/978-1-4612-3660-3_{1}6
- Shiroh Itoh, Coefficients of normal Hilbert polynomials, J. Algebra 150 (1992), no. 1, 101–117. MR 1174891, DOI 10.1016/S0021-8693(05)80052-3
- Daniel Katz, Note on multiplicity, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1021–1026. MR 929434, DOI 10.1090/S0002-9939-1988-0929434-8
- David Kirby and Hefzi A. Mehran, A note on the coefficients of the Hilbert-Samuel polynomial for a Cohen-Macaulay module, J. London Math. Soc. (2) 25 (1982), no. 3, 449–457. MR 657501, DOI 10.1112/jlms/s2-25.3.449
- D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc. 35 (1960), 209–214. MR 110731, DOI 10.1112/jlms/s1-35.2.209
- D. Rees, Degree functions in local rings, Proc. Cambridge Philos. Soc. 57 (1961), 1–7. MR 124353, DOI 10.1017/s0305004100034794
- M. E. Rossi, A bound on the reduction number of a primary ideal, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1325–1332. MR 1670423, DOI 10.1090/S0002-9939-99-05393-9
- Maria Evelina Rossi and Giuseppe Valla, Hilbert functions of filtered modules, Lecture Notes of the Unione Matematica Italiana, vol. 9, Springer-Verlag, Berlin; UMI, Bologna, 2010. MR 2723038, DOI 10.1007/978-3-642-14240-6
- Maria Evelina Rossi and Giuseppe Valla, The Hilbert function of the Ratliff-Rush filtration, J. Pure Appl. Algebra 201 (2005), no. 1-3, 25–41. MR 2158745, DOI 10.1016/j.jpaa.2004.12.042
- M. E. Rossi, G. Valla, and W. V. Vasconcelos, Maximal Hilbert functions, Results Math. 39 (2001), no. 1-2, 99–114. MR 1817403, DOI 10.1007/BF03322678
- V. Srinivas and V. Trivedi, On the Hilbert function of a Cohen-Macaulay local ring, J. Algebraic Geom. 6 (1997), no. 4, 733–751. MR 1487234
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
Bibliographic Information
- Krishna Hanumanthu
- Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
- MR Author ID: 859328
- Email: khanuma@math.ku.edu
- Craig Huneke
- Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
- MR Author ID: 89875
- Email: huneke@math.ku.edu
- Received by editor(s): November 10, 2010
- Published electronically: May 20, 2011
- Additional Notes: The first author was partially supported by Robert D. Adams Visiting Assistant Professorship Fund.
The second author was partially supported by the National Science Foundation, grant DMS-0756853 - Communicated by: Irena Peeva
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 109-117
- MSC (2010): Primary 13A30, 13B22, 13D40, 13H15
- DOI: https://doi.org/10.1090/S0002-9939-2011-11021-9
- MathSciNet review: 2833522