On the fundamental units of a totally real cubic order generated by a unit
HTML articles powered by AMS MathViewer
- by Stéphane R. Louboutin
- Proc. Amer. Math. Soc. 140 (2012), 429-436
- DOI: https://doi.org/10.1090/S0002-9939-2011-10924-9
- Published electronically: June 9, 2011
- PDF | Request permission
Abstract:
We give a new and short proof of J. Beers, D. Henshaw, C. McCall, S. Mulay and M. Spindler following a recent result: if $\epsilon$ is a totally real cubic algebraic unit, then there exists a unit $\eta \in \textbf {Z}[\epsilon ]$ such that $\{\epsilon ,\eta \}$ is a system of fundamental units of the group $U_\epsilon$ of the units of the cubic order $\textbf {Z}[\epsilon ]$, except for an infinite family for which $\epsilon$ is a square in $\textbf {Z}[\epsilon ]$ and one sporadic exception. Not only is our proof shorter, but it enables us to prove a new result: if the conjugates $\epsilon ’$ and $\epsilon ''$ of $\epsilon$ are in $\textbf {Z}[\epsilon ]$, then the subgroup generated by $\epsilon$ and $\epsilon ’$ is of bounded index in $U_\epsilon$, and if $\epsilon >1>\vert \epsilon ’ \vert \geq \vert \epsilon '' \vert >0$ and if $\epsilon ’$ and $\epsilon ''$ are of opposite sign, then $\{\epsilon ,\epsilon ’\}$ is a system of fundamental units of $U_\epsilon$.References
- J. Beers, D. Henshaw, C. K. McCall, S. B. Mulay, and M. Spindler, Fundamentality of a cubic unit $u$ for $\Bbb Z[u]$, Math. Comp. 80 (2011), no. 273, 563–578. MR 2728994, DOI 10.1090/S0025-5718-2010-02383-X
- T. W. Cusick, Lower bounds for regulators, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 63–73. MR 756083, DOI 10.1007/BFb0099441
- Stéphane Louboutin, The exponent three class group problem for some real cyclic cubic number fields, Proc. Amer. Math. Soc. 130 (2002), no. 2, 353–361. MR 1862112, DOI 10.1090/S0002-9939-01-06168-8
- Stéphane R. Louboutin, The class-number one problem for some real cubic number fields with negative discriminants, J. Number Theory 121 (2006), no. 1, 30–39. MR 2268753, DOI 10.1016/j.jnt.2006.01.008
- Stéphane R. Louboutin, The fundamental unit of some quadratic, cubic or quartic orders, J. Ramanujan Math. Soc. 23 (2008), no. 2, 191–210. MR 2432797
- Stéphane Louboutin, On some cubic or quartic algebraic units, J. Number Theory 130 (2010), no. 4, 956–960. MR 2600414, DOI 10.1016/j.jnt.2009.09.002
- Trygve Nagell, Zur Theorie der kubischen Irrationalitäten, Acta Math. 55 (1930), no. 1, 33–65 (German). MR 1555314, DOI 10.1007/BF02546509
- S.-M. Park and G.-N. Lee, The class number one problem for some totally complex quartic number fields, J. Number Theory 129 (2009), no. 6, 1338–1349. MR 2521477, DOI 10.1016/j.jnt.2009.01.022
- Emery Thomas, Fundamental units for orders in certain cubic number fields, J. Reine Angew. Math. 310 (1979), 33–55. MR 546663
Bibliographic Information
- Stéphane R. Louboutin
- Affiliation: Institut de Mathématiques de Luminy, UMR 6206, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France
- Email: stephane.louboutin@univmed.fr
- Received by editor(s): June 15, 2010
- Received by editor(s) in revised form: September 21, 2010, and November 24, 2010
- Published electronically: June 9, 2011
- Communicated by: Matthew A. Papanikolas
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 429-436
- MSC (2010): Primary 11R16, 11R27
- DOI: https://doi.org/10.1090/S0002-9939-2011-10924-9
- MathSciNet review: 2846312
Dedicated: Dedicated to Florence F.