Picard number, holomorphic sectional curvature, and ampleness
HTML articles powered by AMS MathViewer
- by Pit-Mann Wong, Damin Wu and Shing-Tung Yau
- Proc. Amer. Math. Soc. 140 (2012), 621-626
- DOI: https://doi.org/10.1090/S0002-9939-2011-10928-6
- Published electronically: June 14, 2011
- PDF | Request permission
Abstract:
We prove that for a projective manifold with Picard number equal to one, if the manifold admits a Kähler metric whose holomorphic sectional curvature is quasi-negative, then the canonical bundle of the manifold is ample.References
- Christina Birkenhake and Herbert Lange, Complex tori, Progress in Mathematics, vol. 177, Birkhäuser Boston, Inc., Boston, MA, 1999. MR 1713785, DOI 10.1007/978-1-4612-1566-0
- F. Campana, Twistor spaces and nonhyperbolicity of certain symplectic Kähler manifolds, Complex analysis (Wuppertal, 1991) Aspects Math., E17, Friedr. Vieweg, Braunschweig, 1991, pp. 64–69. MR 1122161
- Shoshichi Kobayashi, Hyperbolic complex spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998. MR 1635983, DOI 10.1007/978-3-662-03582-5
- Thomas Peternell, Calabi-Yau manifolds and a conjecture of Kobayashi, Math. Z. 207 (1991), no. 2, 305–318. MR 1109668, DOI 10.1007/BF02571390
- H. L. Royden, The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980), no. 4, 547–558. MR 604712, DOI 10.1007/BF02566705
- P. M. H. Wilson, Calabi-Yau manifolds with large Picard number, Invent. Math. 98 (1989), no. 1, 139–155. MR 1010159, DOI 10.1007/BF01388848
- Damin Wu, Shing-Tung Yau, and Fangyang Zheng, A degenerate Monge-Ampère equation and the boundary classes of Kähler cones, Math. Res. Lett. 16 (2009), no. 2, 365–374. MR 2496750, DOI 10.4310/MRL.2009.v16.n2.a12
- Shing Tung Yau, A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978), no. 1, 197–203. MR 486659, DOI 10.2307/2373880
Bibliographic Information
- Pit-Mann Wong
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- Email: pmwong@nd.edu
- Damin Wu
- Affiliation: Department of Mathematics, The Ohio State University, 1179 University Drive, Newark, Ohio 43055
- MR Author ID: 799841
- Email: dwu@math.ohio-state.edu
- Shing-Tung Yau
- Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
- MR Author ID: 185480
- ORCID: 0000-0003-3394-2187
- Email: yau@math.harvard.edu
- Received by editor(s): October 12, 2010
- Received by editor(s) in revised form: November 30, 2010
- Published electronically: June 14, 2011
- Communicated by: Jianguo Cao
- © Copyright 2011 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 621-626
- MSC (2010): Primary 32Q15, 32Q45, 53C55; Secondary 53C56
- DOI: https://doi.org/10.1090/S0002-9939-2011-10928-6
- MathSciNet review: 2846331