Steffensen’s inequality and $L^{1}-L^{\infty }$ estimates of weighted integrals
HTML articles powered by AMS MathViewer
- by Patrick J. Rabier
- Proc. Amer. Math. Soc. 140 (2012), 665-675
- DOI: https://doi.org/10.1090/S0002-9939-2011-10939-0
- Published electronically: June 22, 2011
- PDF | Request permission
Abstract:
Let $\Phi :[0,\infty )\rightarrow \mathbb {R}$ be a continuous convex function with $\Phi (0)=0.$ We prove that $\Phi \left ( \frac {||f||_{1}}{\omega _{N}||f||_{\infty }}\right ) \leq \frac {1}{\omega _{N}||f||_{\infty }}\int _{ \mathbb {R}^{N}}|f(x)|\Phi ^{\prime }(|x|^{N})dx$ for every $f\in L^{1}(\mathbb {R}^{N})\cap L^{\infty }(\mathbb {R}^{N}),f\neq 0,$ where $\omega _{N}$ is the measure of the unit ball of $\mathbb {R}^{N}.$ This can be used to obtain lower or upper bounds for weighted integrals $\int _{\mathbb {R}^{N}}|f(x)|\eta (|x|)dx$ in terms of the $L^{1}$ and $L^{\infty }$ norms of $f,$ which are often much sharper than crude estimates that may be obtained, if at all, by a visual inspection of the integrand. The basic inequality is essentially independent of Jensen’s inequality, but it is closely related to Steffensen’s inequality.References
- Apéry, R., Une inégalité sur les fonctions de variable réelle, Atti del Quarto Congresso dell’Unione Matematica Italiana, Taormina, 1951, 2 (1953) 3-4.
- Richard Bellman, On inequalities with alternating signs, Proc. Amer. Math. Soc. 10 (1959), 807–809. MR 109864, DOI 10.1090/S0002-9939-1959-0109864-9
- Jean-Claude Evard and Hillel Gauchman, Steffensen type inequalities over general measure spaces, Analysis 17 (1997), no. 2-3, 301–322. MR 1486370, DOI 10.1524/anly.1997.17.23.301
- A. M. Fink, Steffensen type inequalities, Rocky Mountain J. Math. 12 (1982), no. 4, 785–793. MR 683870, DOI 10.1216/RMJ-1982-12-4-785
- Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, Cambridge University Press, Cambridge, 1934.
- Hiriart-Urruty, J.-B. and Lemaréchal, C., Convex analysis and minimization algorithms I, Springer-Verlag, Berlin, 1996.
- Hillel Gauchman, On a further generalization of Steffensen’s inequality, J. Inequal. Appl. 5 (2000), no. 5, 505–513. MR 1800978, DOI 10.1155/S1025583400000291
- Zheng Liu, On extensions of Steffensen’s inequality, J. Math. Anal. Approx. Theory 2 (2007), no. 2, 132–139. MR 2474891
- Peter R. Mercer, Extensions of Steffensen’s inequality, J. Math. Anal. Appl. 246 (2000), no. 1, 325–329. MR 1761167, DOI 10.1006/jmaa.2000.6822
- Peter R. Mercer, Error terms for Steffensen’s, Young’s and Chebychev’s inequalities, J. Math. Inequal. 2 (2008), no. 4, 479–486. MR 2482461, DOI 10.7153/jmi-02-43
- D. S. Mitrinović, Analytic inequalities, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR 0274686, DOI 10.1007/978-3-642-99970-3
- Constantin P. Niculescu, Choquet theory for signed measures, Math. Inequal. Appl. 5 (2002), no. 3, 479–489. Inequalities, 2001 (Timişoara). MR 1907533, DOI 10.7153/mia-05-47
- J. E. Pečarić, On the Bellman generalization of Steffensen’s inequality, J. Math. Anal. Appl. 88 (1982), no. 2, 505–507. MR 667073, DOI 10.1016/0022-247X(82)90208-6
- Josip E. Pečarić, Frank Proschan, and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, vol. 187, Academic Press, Inc., Boston, MA, 1992. MR 1162312
- Josip Pec̆arić and Sanja Varošanec, Multidimensional and discrete Steffensen inequality, Southeast Asian Bull. Math. 23 (1999), no. 2, 277–284. MR 1810727
- James Serrin and Dale E. Varberg, A general chain rule for derivatives and the change of variables formula for the Lebesgue integral, Amer. Math. Monthly 76 (1969), 514–520. MR 247011, DOI 10.2307/2316959
- Steffensen, J. F., On certain inequalities between mean values, and their application to actuarial problems, Skand. Aktuarietidskr. 1 (1918) 82-97.
- J. F. Steffensen, Bounds of certain trigonometrical integrals, C. R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 181–186. MR 0019761
- Shan-He Wu and H. M. Srivastava, Some improvements and generalizations of Steffensen’s integral inequality, Appl. Math. Comput. 192 (2007), no. 2, 422–428. MR 2385608, DOI 10.1016/j.amc.2007.03.020
- William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685, DOI 10.1007/978-1-4612-1015-3
Bibliographic Information
- Patrick J. Rabier
- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: rabier@imap.pitt.edu
- Received by editor(s): June 16, 2010
- Received by editor(s) in revised form: June 21, 2010, and December 5, 2010
- Published electronically: June 22, 2011
- Additional Notes: The useful comments of an anonymous referee are gratefully acknowledged.
- Communicated by: Tatiana Toro
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 665-675
- MSC (2010): Primary 26D15, 39B62
- DOI: https://doi.org/10.1090/S0002-9939-2011-10939-0
- MathSciNet review: 2846336