## Steffensen’s inequality and $L^{1}-L^{\infty }$ estimates of weighted integrals

HTML articles powered by AMS MathViewer

- by Patrick J. Rabier
- Proc. Amer. Math. Soc.
**140**(2012), 665-675 - DOI: https://doi.org/10.1090/S0002-9939-2011-10939-0
- Published electronically: June 22, 2011
- PDF | Request permission

## Abstract:

Let $\Phi :[0,\infty )\rightarrow \mathbb {R}$ be a continuous convex function with $\Phi (0)=0.$ We prove that $\Phi \left ( \frac {||f||_{1}}{\omega _{N}||f||_{\infty }}\right ) \leq \frac {1}{\omega _{N}||f||_{\infty }}\int _{ \mathbb {R}^{N}}|f(x)|\Phi ^{\prime }(|x|^{N})dx$ for every $f\in L^{1}(\mathbb {R}^{N})\cap L^{\infty }(\mathbb {R}^{N}),f\neq 0,$ where $\omega _{N}$ is the measure of the unit ball of $\mathbb {R}^{N}.$ This can be used to obtain lower or upper bounds for weighted integrals $\int _{\mathbb {R}^{N}}|f(x)|\eta (|x|)dx$ in terms of the $L^{1}$ and $L^{\infty }$ norms of $f,$ which are often much sharper than crude estimates that may be obtained, if at all, by a visual inspection of the integrand. The basic inequality is essentially independent of Jensen’s inequality, but it is closely related to Steffensen’s inequality.## References

- Apéry, R., Une inégalité sur les fonctions de variable réelle, Atti del Quarto Congresso dell’Unione Matematica Italiana, Taormina, 1951,
**2**(1953) 3-4. - Richard Bellman,
*On inequalities with alternating signs*, Proc. Amer. Math. Soc.**10**(1959), 807–809. MR**109864**, DOI 10.1090/S0002-9939-1959-0109864-9 - Jean-Claude Evard and Hillel Gauchman,
*Steffensen type inequalities over general measure spaces*, Analysis**17**(1997), no. 2-3, 301–322. MR**1486370**, DOI 10.1524/anly.1997.17.23.301 - A. M. Fink,
*Steffensen type inequalities*, Rocky Mountain J. Math.**12**(1982), no. 4, 785–793. MR**683870**, DOI 10.1216/RMJ-1982-12-4-785 - Hardy, G. H., Littlewood, J. E. and Pólya, G.,
*Inequalities,*Cambridge University Press, Cambridge, 1934. - Hiriart-Urruty, J.-B. and Lemaréchal, C.,
*Convex analysis and minimization algorithms I,*Springer-Verlag, Berlin, 1996. - Hillel Gauchman,
*On a further generalization of Steffensen’s inequality*, J. Inequal. Appl.**5**(2000), no. 5, 505–513. MR**1800978**, DOI 10.1155/S1025583400000291 - Zheng Liu,
*On extensions of Steffensen’s inequality*, J. Math. Anal. Approx. Theory**2**(2007), no. 2, 132–139. MR**2474891** - Peter R. Mercer,
*Extensions of Steffensen’s inequality*, J. Math. Anal. Appl.**246**(2000), no. 1, 325–329. MR**1761167**, DOI 10.1006/jmaa.2000.6822 - Peter R. Mercer,
*Error terms for Steffensen’s, Young’s and Chebychev’s inequalities*, J. Math. Inequal.**2**(2008), no. 4, 479–486. MR**2482461**, DOI 10.7153/jmi-02-43 - D. S. Mitrinović,
*Analytic inequalities*, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. MR**0274686**, DOI 10.1007/978-3-642-99970-3 - Constantin P. Niculescu,
*Choquet theory for signed measures*, Math. Inequal. Appl.**5**(2002), no. 3, 479–489. Inequalities, 2001 (Timişoara). MR**1907533**, DOI 10.7153/mia-05-47 - J. E. Pečarić,
*On the Bellman generalization of Steffensen’s inequality*, J. Math. Anal. Appl.**88**(1982), no. 2, 505–507. MR**667073**, DOI 10.1016/0022-247X(82)90208-6 - Josip E. Pečarić, Frank Proschan, and Y. L. Tong,
*Convex functions, partial orderings, and statistical applications*, Mathematics in Science and Engineering, vol. 187, Academic Press, Inc., Boston, MA, 1992. MR**1162312** - Josip Pec̆arić and Sanja Varošanec,
*Multidimensional and discrete Steffensen inequality*, Southeast Asian Bull. Math.**23**(1999), no. 2, 277–284. MR**1810727** - James Serrin and Dale E. Varberg,
*A general chain rule for derivatives and the change of variables formula for the Lebesgue integral*, Amer. Math. Monthly**76**(1969), 514–520. MR**247011**, DOI 10.2307/2316959 - Steffensen, J. F., On certain inequalities between mean values, and their application to actuarial problems,
*Skand. Aktuarietidskr*.**1**(1918) 82-97. - J. F. Steffensen,
*Bounds of certain trigonometrical integrals*, C. R. Dixième Congrès Math. Scandinaves 1946, Jul. Gjellerups Forlag, Copenhagen, 1947, pp. 181–186. MR**0019761** - Shan-He Wu and H. M. Srivastava,
*Some improvements and generalizations of Steffensen’s integral inequality*, Appl. Math. Comput.**192**(2007), no. 2, 422–428. MR**2385608**, DOI 10.1016/j.amc.2007.03.020 - William P. Ziemer,
*Weakly differentiable functions*, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR**1014685**, DOI 10.1007/978-1-4612-1015-3

## Bibliographic Information

**Patrick J. Rabier**- Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Email: rabier@imap.pitt.edu
- Received by editor(s): June 16, 2010
- Received by editor(s) in revised form: June 21, 2010, and December 5, 2010
- Published electronically: June 22, 2011
- Additional Notes: The useful comments of an anonymous referee are gratefully acknowledged.
- Communicated by: Tatiana Toro
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**140**(2012), 665-675 - MSC (2010): Primary 26D15, 39B62
- DOI: https://doi.org/10.1090/S0002-9939-2011-10939-0
- MathSciNet review: 2846336