## The hull of Rudin’s Klein bottle

HTML articles powered by AMS MathViewer

- by John T. Anderson PDF
- Proc. Amer. Math. Soc.
**140**(2012), 553-560 Request permission

## Abstract:

In 1981 Walter Rudin exhibited a totally real embedding of the Klein bottle into $\mathbb {C}^2$. We show that the polynomially convex hull of Rudin’s Klein bottle contains an open subset of $\mathbb {C}^2$. We also describe another totally real Klein bottle in $\mathbb {C}^2$ whose hull has topological dimension equal to three.## References

- Herbert Alexander and John Wermer,
*Polynomial hulls with convex fibers*, Math. Ann.**271**(1985), no. 1, 99–109. MR**779607**, DOI 10.1007/BF01455798 - John T. Anderson,
*On an example of Ahern and Rudin*, Proc. Amer. Math. Soc.**116**(1992), no. 3, 695–699. MR**1129870**, DOI 10.1090/S0002-9939-1992-1129870-4 - Andrzej Derdzinski and Tadeusz Januszkiewicz,
*Totally real immersions of surfaces*, Trans. Amer. Math. Soc.**362**(2010), no. 1, 53–115. MR**2550145**, DOI 10.1090/S0002-9947-09-04940-X - J. Duval and D. Gayet,
*Riemann Surfaces and Totally Real Tori*, arXiv:math.cv/0910.2139 - Franc Forstnerič,
*Complex tangents of real surfaces in complex surfaces*, Duke Math. J.**67**(1992), no. 2, 353–376. MR**1177310**, DOI 10.1215/S0012-7094-92-06713-5 - Franc Forstnerič,
*Analytic disks with boundaries in a maximal real submanifold of $\textbf {C}^2$*, Ann. Inst. Fourier (Grenoble)**37**(1987), no. 1, 1–44 (English, with French summary). MR**894560**, DOI 10.5802/aif.1076 - John B. Garnett and Donald E. Marshall,
*Harmonic measure*, New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge, 2005. MR**2150803**, DOI 10.1017/CBO9780511546617 - Paul Koosis,
*Introduction to $H_p$ spaces*, 2nd ed., Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge, 1998. With two appendices by V. P. Havin [Viktor Petrovich Khavin]. MR**1669574** - Thomas Ransford,
*Potential theory in the complex plane*, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR**1334766**, DOI 10.1017/CBO9780511623776 - Walter Rudin,
*Totally real Klein bottles in $\textbf {C}^{2}$*, Proc. Amer. Math. Soc.**82**(1981), no. 4, 653–654. MR**614897**, DOI 10.1090/S0002-9939-1981-0614897-1 - Edgar Lee Stout,
*Polynomial convexity*, Progress in Mathematics, vol. 261, Birkhäuser Boston, Inc., Boston, MA, 2007. MR**2305474**, DOI 10.1007/978-0-8176-4538-0 - John Wermer,
*Subharmonicity and hulls*, Pacific J. Math.**58**(1975), no. 1, 283–290. MR**393567**, DOI 10.2140/pjm.1975.58.283

## Additional Information

**John T. Anderson**- Affiliation: Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, Massachusetts 01610
- MR Author ID: 251416
- Email: anderson@mathcs.holycross.edu
- Received by editor(s): November 20, 2010
- Published electronically: June 2, 2011
- Communicated by: Franc Forstneric
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**140**(2012), 553-560 - MSC (2010): Primary 32E20; Secondary 32V40
- DOI: https://doi.org/10.1090/S0002-9939-2011-10998-5
- MathSciNet review: 2846323