## Loss of derivatives for systems of complex vector fields and sums of squares

HTML articles powered by AMS MathViewer

- by Tran Vu Khanh, Stefano Pinton and Giuseppe Zampieri PDF
- Proc. Amer. Math. Soc.
**140**(2012), 519-530 Request permission

## Abstract:

We discuss, both for systems of complex vector fields and for sums of squares, the phenomenon discovered by Kohn of hypoellipticity with loss of derivatives.## References

- Antonio Bove, Makhlouf Derridj, Joseph J. Kohn, and David S. Tartakoff,
*Sums of squares of complex vector fields and (analytic-) hypoellipticity*, Math. Res. Lett.**13**(2006), no. 5-6, 683–701. MR**2280767**, DOI 10.4310/MRL.2006.v13.n5.a1 - Denis R. Bell and Salah Eldin A. Mohammed,
*An extension of Hörmander’s theorem for infinitely degenerate second-order operators*, Duke Math. J.**78**(1995), no. 3, 453–475. MR**1334203**, DOI 10.1215/S0012-7094-95-07822-3 - Michael Christ,
*Hypoellipticity of the Kohn Laplacian for three-dimensional tubular Cauchy-Riemann structures*, J. Inst. Math. Jussieu**1**(2002), no. 2, 279–291. MR**1954822**, DOI 10.1017/S1474-748002000063 - V. S. Fediĭ,
*A certain criterion for hypoellipticity*, Mat. Sb. (N.S.)**85 (127)**(1971), 18–48 (Russian). MR**0287160** - G. B. Folland and J. J. Kohn,
*The Neumann problem for the Cauchy-Riemann complex*, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR**0461588** - Lars Hörmander,
*Hypoelliptic second order differential equations*, Acta Math.**119**(1967), 147–171. MR**222474**, DOI 10.1007/BF02392081 - J. J. Kohn,
*Hypoellipticity at points of infinite type*, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) Contemp. Math., vol. 251, Amer. Math. Soc., Providence, RI, 2000, pp. 393–398. MR**1771281**, DOI 10.1090/conm/251/03882 - J. J. Kohn,
*Superlogarithmic estimates on pseudoconvex domains and CR manifolds*, Ann. of Math. (2)**156**(2002), no. 1, 213–248. MR**1935846**, DOI 10.2307/3597189 - J. J. Kohn,
*Hypoellipticity and loss of derivatives*, Ann. of Math. (2)**162**(2005), no. 2, 943–986. With an appendix by Makhlouf Derridj and David S. Tartakoff. MR**2183286**, DOI 10.4007/annals.2005.162.943 - J. J. Kohn and L. Nirenberg,
*Non-coercive boundary value problems*, Comm. Pure Appl. Math.**18**(1965), 443–492. MR**181815**, DOI 10.1002/cpa.3160180305 - S. Kusuoka and D. Stroock,
*Applications of the Malliavin calculus. II*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**32**(1985), no. 1, 1–76. MR**783181** - Yoshinori Morimoto,
*Hypoellipticity for infinitely degenerate elliptic operators*, Osaka J. Math.**24**(1987), no. 1, 13–35. MR**881744** - Cesare Parenti and Alberto Parmeggiani,
*On the hypoellipticity with a big loss of derivatives*, Kyushu J. Math.**59**(2005), no. 1, 155–230. MR**2134059**, DOI 10.2206/kyushujm.59.155 - E. M. Stein,
*An example on the Heisenberg group related to the Lewy operator*, Invent. Math.**69**(1982), no. 2, 209–216. MR**674401**, DOI 10.1007/BF01399501 - David S. Tartakoff,
*Analyticity for singular sums of squares of degenerate vector fields*, Proc. Amer. Math. Soc.**134**(2006), no. 11, 3343–3352. MR**2231919**, DOI 10.1090/S0002-9939-06-08419-X

## Additional Information

**Tran Vu Khanh**- Affiliation: Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
- MR Author ID: 815734
- Email: khanh@math.unipd.it
**Stefano Pinton**- Affiliation: Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
- Email: pinton@math.unipd.it
**Giuseppe Zampieri**- Affiliation: Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
- Email: zampieri@math.unipd.it
- Received by editor(s): September 30, 2010
- Published electronically: September 27, 2011
- Communicated by: Mei-Chi Shaw
- © Copyright 2011 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**140**(2012), 519-530 - MSC (2010): Primary 32W05, 32W25, 32T25
- DOI: https://doi.org/10.1090/S0002-9939-2011-11287-5
- MathSciNet review: 2846320