On the Menger covering property and $D$-spaces
HTML articles powered by AMS MathViewer
- by Dušan Repovš and Lyubomyr Zdomskyy
- Proc. Amer. Math. Soc. 140 (2012), 1069-1074
- DOI: https://doi.org/10.1090/S0002-9939-2011-10945-6
- Published electronically: July 6, 2011
- PDF | Request permission
Abstract:
The main results of this paper are:
It is consistent that every subparacompact space $X$ of size $\omega _1$ is a $D$-space.
If there exists a Michael space, then all productively Lindelöf spaces have the Menger property and, therefore, are $D$-spaces.
Every locally $D$-space which admits a $\sigma$-locally finite cover by Lindelöf spaces is a $D$-space.
References
- Alas, O.; Aurichi, L.F.; Junqueira, L.R.; Tall, F.D., Non-productively Lindelöf spaces and small cardinals, Houston J. Math., to appear.
- Leandro F. Aurichi, $D$-spaces, topological games, and selection principles, Topology Proc. 36 (2010), 107–122. MR 2591778
- Carlos R. Borges and Albert C. Wehrly, A study of $D$-spaces, Topology Proc. 16 (1991), 7–15. MR 1206448
- Lev Bukovský and Jozef Haleš, On Hurewicz properties, Topology Appl. 132 (2003), no. 1, 71–79. MR 1990080, DOI 10.1016/S0166-8641(02)00364-4
- Dennis K. Burke, Covering properties, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 347–422. MR 776628
- Eric K. van Douwen and Washek F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), no. 2, 371–377. MR 547605
- Gruenhage, G., A survey on $D$ spaces, Contemp. Math., Vol. 533, Amer. Math. Soc., Providence, RI, 2011.
- Hurewicz, W., Über die Verallgemeinerung des Borellschen Theorems, Math. Z. 24 (1925), 401–421.
- Winfried Just, Arnold W. Miller, Marion Scheepers, and Paul J. Szeptycki, The combinatorics of open covers. II, Topology Appl. 73 (1996), no. 3, 241–266. MR 1419798, DOI 10.1016/S0166-8641(96)00075-2
- Juan Carlos Martínez and Lajos Soukup, The D-property in unions of scattered spaces, Topology Appl. 156 (2009), no. 18, 3086–3090. MR 2556068, DOI 10.1016/j.topol.2009.03.047
- J. Tatch Moore, Some of the combinatorics related to Michael’s problem, Proc. Amer. Math. Soc. 127 (1999), no. 8, 2459–2467. MR 1486743, DOI 10.1090/S0002-9939-99-04808-X
- Repický, M., Another proof of Hurewicz theorem, Tatra Mt. Math. Publ., to appear.
- Dušan Repovš and Pavel Vladimirovič Semenov, Continuous selections of multivalued mappings, Mathematics and its Applications, vol. 455, Kluwer Academic Publishers, Dordrecht, 1998. MR 1659914, DOI 10.1007/978-94-017-1162-3
- Marion Scheepers, Combinatorics of open covers. I. Ramsey theory, Topology Appl. 69 (1996), no. 1, 31–62. MR 1378387, DOI 10.1016/0166-8641(95)00067-4
- Shi, W.; Zhang, H., A note on $D$-spaces, preprint, 2010.
- Tall, F.D., Productively Lindelöf spaces may all be $D$, Canad. Math. Bulletin, to appear.
- Tall, F.D., Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or $D$, Topology Appl., to appear.
- Tall, F.D., A note on productively Lindelöf spaces, preprint, 2010.
- Tall, F.D., Set-theoretic problems concerning Lindelöf spaces, preprint, 2010.
- Rastislav Telgársky, Topological games: on the 50th anniversary of the Banach-Mazur game, Rocky Mountain J. Math. 17 (1987), no. 2, 227–276. MR 892457, DOI 10.1216/RMJ-1987-17-2-227
- Tsaban, B., Selection principles and special sets of reals, in: Open problems in topology. II (edited By Elliott Pearl), Elsevier Sci. Publ., 2007, pp. 91–108.
- Jerry E. Vaughan, Small uncountable cardinals and topology, Open problems in topology, North-Holland, Amsterdam, 1990, pp. 195–218. With an appendix by S. Shelah. MR 1078647
- Lubomyr Zdomsky, A semifilter approach to selection principles, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 525–539. MR 2174530
Bibliographic Information
- Dušan Repovš
- Affiliation: Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, P.O. Box 2964, Ljubljana, Slovenia 1001
- MR Author ID: 147135
- ORCID: 0000-0002-6643-1271
- Email: dusan.repovs@guest.arnes.si
- Lyubomyr Zdomskyy
- Affiliation: Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Straße 25, A-1090 Wien, Austria
- MR Author ID: 742789
- Email: lzdomsky@gmail.com
- Received by editor(s): September 28, 2010
- Received by editor(s) in revised form: December 4, 2010, and December 13, 2010
- Published electronically: July 6, 2011
- Additional Notes: The first author was supported by SRA grants P1-0292-0101 and J1-2057-0101.
The second author acknowledges the support of FWF grant P19898-N18
The authors would also like to thank Leandro Aurichi, Franklin Tall, and Hang Zhang for kindly making their recent papers available to us. - Communicated by: Julia Knight
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1069-1074
- MSC (2010): Primary 54D20, 54A35; Secondary 54H05, 03E17
- DOI: https://doi.org/10.1090/S0002-9939-2011-10945-6
- MathSciNet review: 2869091