The number of Goldbach representations of an integer
HTML articles powered by AMS MathViewer
- by Alessandro Languasco and Alessandro Zaccagnini
- Proc. Amer. Math. Soc. 140 (2012), 795-804
- DOI: https://doi.org/10.1090/S0002-9939-2011-10957-2
- Published electronically: July 20, 2011
- PDF | Request permission
Abstract:
Let $\Lambda$ be the von Mangoldt function and $R(n)\! =\! \sum _{h+k=n}\! \Lambda (h)\Lambda (k)$ be the counting function for the Goldbach numbers. Let $N \geq 2$ and assume that the Riemann Hypothesis holds. We prove that \[ \sum _{n=1}^{N} R(n) = \frac {N^{2}}{2} -2 \sum _{\rho } \frac {N^{\rho + 1}}{\rho (\rho + 1)} + \mathcal {O}(N \log ^{3}N), \] where $\rho =1/2+i\gamma$ runs over the non-trivial zeros of the Riemann zeta-function $\zeta (s)$. This improves a recent result by Bhowmik and Schlage-Puchta.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Gautami Bhowmik and Jan-Christoph Schlage-Puchta, Mean representation number of integers as the sum of primes, Nagoya Math. J. 200 (2010), 27–33. MR 2747876, DOI 10.1215/00277630-2010-010
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- Akio Fujii, An additive problem of prime numbers, Acta Arith. 58 (1991), no. 2, 173–179. MR 1121079, DOI 10.4064/aa-58-2-173-179
- Akio Fujii, An additive problem of prime numbers. II, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 7, 248–252. MR 1137920
- Akio Fujii, An additive problem of prime numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 8, 278–283. MR 1137928
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187
- Andrew Granville, Refinements of Goldbach’s conjecture, and the generalized Riemann hypothesis. part 1, Funct. Approx. Comment. Math. 37 (2007), no. part 1, 159–173. MR 2357316, DOI 10.7169/facm/1229618748
- Andrew Granville, Corrigendum to “Refinements of Goldbach’s conjecture, and the generalized Riemann hypothesis” [MR2357316]. part 2, Funct. Approx. Comment. Math. 38 (2008), no. part 2, 235–237. MR 2492859
- G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math. 44 (1923), no. 1, 1–70. MR 1555183, DOI 10.1007/BF02403921
- A. Languasco, Some refinements of error terms estimates for certain additive problems with primes, J. Number Theory 81 (2000), no. 1, 149–161. MR 1743499, DOI 10.1006/jnth.1999.2468
- A. Languasco and A. Perelli, On Linnik’s theorem on Goldbach numbers in short intervals and related problems, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 2, 307–322 (English, with English and French summaries). MR 1296733
- U. V. Linnik, A new proof of the Goldbach-Vinogradow theorem, Rec. Math. [Mat. Sbornik] N.S. 19 (61) (1946), 3–8 (Russian, with English summary). MR 0018693
- Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem, Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 503–520 (Russian). MR 0053961
Bibliographic Information
- Alessandro Languasco
- Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy
- MR Author ID: 354780
- ORCID: 0000-0003-2723-554X
- Email: languasco@math.unipd.it
- Alessandro Zaccagnini
- Affiliation: Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze 53/a, Campus Universitario, 43124 Parma, Italy
- Email: alessandro.zaccagnini@unipr.it
- Received by editor(s): November 11, 2010
- Received by editor(s) in revised form: December 16, 2010
- Published electronically: July 20, 2011
- Communicated by: Matthew A. Papanikolas
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 795-804
- MSC (2010): Primary 11P32; Secondary 11P55
- DOI: https://doi.org/10.1090/S0002-9939-2011-10957-2
- MathSciNet review: 2869064