On the number of factors in the unipotent factorization of holomorphic mappings into $\text {SL}_2(\mathbb {C})$
HTML articles powered by AMS MathViewer
- by Björn Ivarsson and Frank Kutzschebauch
- Proc. Amer. Math. Soc. 140 (2012), 823-838
- DOI: https://doi.org/10.1090/S0002-9939-2011-11025-6
- Published electronically: June 23, 2011
- PDF | Request permission
Abstract:
We estimate the number of unipotent elements needed to factor a null-homotopic holomorphic map from a finite dimensional reduced Stein space $X$ into $\text {SL}_2(\mathbb {C})$.References
- P. M. Cohn, On the structure of the $\textrm {GL}_{2}$ of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5–53. MR 207856
- Franc Forstnerič, The Oka principle for sections of stratified fiber bundles, Pure Appl. Math. Q. 6 (2010), no. 3, Special Issue: In honor of Joseph J. Kohn., 843–874. MR 2677316, DOI 10.4310/PAMQ.2010.v6.n3.a11
- Franc Forstnerič and Jasna Prezelj, Extending holomorphic sections from complex subvarieties, Math. Z. 236 (2001), no. 1, 43–68. MR 1812449, DOI 10.1007/PL00004826
- Franc Forstnerič and Jasna Prezelj, Oka’s principle for holomorphic submersions with sprays, Math. Ann. 322 (2002), no. 4, 633–666. MR 1905108, DOI 10.1007/s002080100249
- M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2 (1989), no. 4, 851–897. MR 1001851, DOI 10.1090/S0894-0347-1989-1001851-9
- Björn Ivarsson and Frank Kutzschebauch. Holomorphic factorization of mappings into $\mbox {SL}_n(\mathbb {C})$. Submitted for publication, arXiv:0812.0312, December 2008.
- Björn Ivarsson and Frank Kutzschebauch, A solution of Gromov’s Vaserstein problem, C. R. Math. Acad. Sci. Paris 346 (2008), no. 23-24, 1239–1243 (English, with English and French summaries). MR 2473300, DOI 10.1016/j.crma.2008.10.017
- Björn Ivarsson and Frank Kutzschebauch. On Kazhdan’s property (T) for the special linear group of holomorphic functions, 2010, unpublished manuscript.
- A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235–252, 477 (Russian). MR 0472792
- L. N. Vaserstein, Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc. 103 (1988), no. 3, 741–746. MR 947649, DOI 10.1090/S0002-9939-1988-0947649-X
- Wilberd van der Kallen, $\textrm {SL}_{3}(\textbf {C}[X])$ does not have bounded word length, Algebraic $K$-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 357–361. MR 689383
Bibliographic Information
- Björn Ivarsson
- Affiliation: Department of Natural Sciences, Engineering and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden
- Email: Bjorn.Ivarsson@miun.se
- Frank Kutzschebauch
- Affiliation: Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH–3012 Bern, Swit- zerland
- MR Author ID: 330461
- Email: frank.kutzschebauch@math.unibe.ch
- Received by editor(s): December 5, 2010
- Published electronically: June 23, 2011
- Additional Notes: The second author was supported by Schweizerische Nationalfonds grant 200021-116165/1.
- Communicated by: Franc Forstneric
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 823-838
- MSC (2010): Primary 32E10
- DOI: https://doi.org/10.1090/S0002-9939-2011-11025-6
- MathSciNet review: 2869067