Euler obstruction and polar multiplicities of images of finite morphisms on ICIS
HTML articles powered by AMS MathViewer
- by R. Callejas-Bedregal, M. J. Saia and J. N. Tomazella
- Proc. Amer. Math. Soc. 140 (2012), 855-863
- DOI: https://doi.org/10.1090/S0002-9939-2011-11125-0
- Published electronically: June 29, 2011
- PDF | Request permission
Abstract:
We show how to compute the local polar multiplicities of a germ at zero of an analytic variety $Y$ in $\mathbb {C}^p$, which is the image by a finite morphism $f: Z \to Y$, of a $d$-dimensional isolated complete intersection singularity $Z$ in $\mathbb {C}^n$. We also show how to compute the local Euler obstruction of $Y$ at zero in the case that it is reduced. For this we apply the formula due to Lê and Teissier which describes the local Euler obstruction as an alternating sum of the local polar multiplicities.References
- Terence Gaffney, Polar multiplicities and equisingularity of map germs, Topology 32 (1993), no. 1, 185–223. MR 1204414, DOI 10.1016/0040-9383(93)90045-W
- G. Gonzalez-Sprinberg, L’obstruction locale d’Euler et le théorème de MacPherson, Astérisque 82 and 83, 7–33, 1978.
- E. Brieskorn and G.-M. Greuel, Singularities of complete intersections, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 123–129. MR 0367273
- V. H. Jorge Pérez and M. J. Saia, Euler obstruction, polar multiplicities and equisingularity of map germs in $\scr O(n,p),\ n<p$, Internat. J. Math. 17 (2006), no. 8, 887–903. MR 2261639, DOI 10.1142/S0129167X06003783
- V. H. Jorge Pérez, D. Levcovitz, and M. J. Saia, Invariants, equisingularity and Euler obstruction of map germs from $\Bbb C^n$ to $\Bbb C^n$, J. Reine Angew. Math. 587 (2005), 145–167. MR 2186977, DOI 10.1515/crll.2005.2005.587.145
- Gary Kennedy, MacPherson’s Chern classes of singular algebraic varieties, Comm. Algebra 18 (1990), no. 9, 2821–2839. MR 1063344, DOI 10.1080/00927879008824054
- Lê Dũng Tráng, Computation of the Milnor number of an isolated singularity of a complete intersection, Funkcional. Anal. i Priložen. 8 (1974), no. 2, 45–49 (Russian). MR 0350064
- Lê Dũng Tráng and Bernard Teissier, Variétés polaires locales et classes de Chern des variétés singulières, Ann. of Math. (2) 114 (1981), no. 3, 457–491 (French). MR 634426, DOI 10.2307/1971299
- E. J. N. Looijenga, Isolated singular points on complete intersections, London Mathematical Society Lecture Note Series, vol. 77, Cambridge University Press, Cambridge, 1984. MR 747303, DOI 10.1017/CBO9780511662720
- R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 361141, DOI 10.2307/1971080
- Washington Luiz Marar and David Mond, Multiple point schemes for corank $1$ maps, J. London Math. Soc. (2) 39 (1989), no. 3, 553–567. MR 1002466, DOI 10.1112/jlms/s2-39.3.553
- David Mumford, Algebraic geometry. I, Grundlehren der Mathematischen Wissenschaften, No. 221, Springer-Verlag, Berlin-New York, 1976. Complex projective varieties. MR 0453732
- J. J. Nuño-Ballesteros and J. N. Tomazella, Equisingularity of families of map germs on curves (2008), preprint.
- Bernard Teissier, Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981) Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 314–491 (French). MR 708342, DOI 10.1007/BFb0071291
Bibliographic Information
- R. Callejas-Bedregal
- Affiliation: Departamento de Matemática, UFPB Campus I, Cidade Universitária 58.051-900, João Pessoa, PB, Brazil
- Email: roberto@mat.ufpb.br
- M. J. Saia
- Affiliation: Departamento de Matemática, ICMC-USP, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil
- MR Author ID: 308611
- Email: mjsaia@icmc.usp.br
- J. N. Tomazella
- Affiliation: Departamento de Matemática, UFSCar, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
- Email: tomazella@dm.ufscar.br
- Received by editor(s): April 6, 2009
- Received by editor(s) in revised form: December 7, 2010
- Published electronically: June 29, 2011
- Additional Notes: The first-named author is partially supported by CAPES-Procad grant 190-2007; CNPq, grant 620108/2008-8; and FAPESP, grant 2010/03525-9
The second- and third-named authors are partially supported by CNPq, grant 300733/2009-7; CAPES, grant 222/2010; and FAPESP, grant 2008/54222-6 - Communicated by: Ted Chinburg
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 855-863
- MSC (2010): Primary 32S30; Secondary 32S10
- DOI: https://doi.org/10.1090/S0002-9939-2011-11125-0
- MathSciNet review: 2869070