The $K$-theoretic Farrell-Jones conjecture for CAT(0)-groups
HTML articles powered by AMS MathViewer
- by Christian Wegner
- Proc. Amer. Math. Soc. 140 (2012), 779-793
- DOI: https://doi.org/10.1090/S0002-9939-2011-11150-X
- Published electronically: July 14, 2011
- PDF | Request permission
Abstract:
We prove the $K$-theoretic Farrell-Jones conjecture with (twisted) coefficients for CAT(0)-groups.References
- Arthur Bartels, Tom Farrell, Lowell Jones, and Holger Reich, On the isomorphism conjecture in algebraic $K$-theory, Topology 43 (2004), no. 1, 157–213. MR 2030590, DOI 10.1016/S0040-9383(03)00032-6
- Bartels, Arthur; Lück, Wolfgang: The Borel Conjecture for hyperbolic and CAT(0)-groups. arXiv:0901.0442v2.
- Bartels, Arthur; Lück, Wolfgang: Geodesic flow for CAT(0)-groups. arXiv:1003.4630v1.
- Arthur Bartels, Wolfgang Lück, and Holger Reich, The $K$-theoretic Farrell-Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008), no. 1, 29–70. MR 2385666, DOI 10.1007/s00222-007-0093-7
- Arthur Bartels and Holger Reich, On the Farrell-Jones conjecture for higher algebraic $K$-theory, J. Amer. Math. Soc. 18 (2005), no. 3, 501–545. MR 2138135, DOI 10.1090/S0894-0347-05-00482-0
- Arthur Bartels and Holger Reich, Coefficients for the Farrell-Jones conjecture, Adv. Math. 209 (2007), no. 1, 337–362. MR 2294225, DOI 10.1016/j.aim.2006.05.005
- James F. Davis and Wolfgang Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$- and $L$-theory, $K$-Theory 15 (1998), no. 3, 201–252. MR 1659969, DOI 10.1023/A:1007784106877
- Wolfgang Lück and Holger Reich, The Baum-Connes and the Farrell-Jones conjectures in $K$- and $L$-theory, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 703–842. MR 2181833, DOI 10.1007/978-3-540-27855-9_{1}5
Bibliographic Information
- Christian Wegner
- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, Bonn, D-53115, Germany
- Email: wegner@math.uni-bonn.de
- Received by editor(s): December 15, 2010
- Published electronically: July 14, 2011
- Additional Notes: The work on this paper was supported by the SFB 878 – Groups, Geometry & Actions.
- Communicated by: Alexander N. Dranishnikov
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 779-793
- MSC (2000): Primary 19D10; Secondary 19A31, 19B28, 20F67
- DOI: https://doi.org/10.1090/S0002-9939-2011-11150-X
- MathSciNet review: 2869063