Every $K(n)$–local spectrum is the homotopy fixed points of its Morava module
HTML articles powered by AMS MathViewer
- by Daniel G. Davis and Takeshi Torii
- Proc. Amer. Math. Soc. 140 (2012), 1097-1103
- DOI: https://doi.org/10.1090/S0002-9939-2011-11189-4
- Published electronically: July 18, 2011
- PDF | Request permission
Abstract:
Let $n \geq 1$ and let $p$ be any prime. Also, let $E_n$ be the Lubin-Tate spectrum, $G_n$ the extended Morava stabilizer group, and $K(n)$ the $n$th Morava $K$-theory spectrum. Then work of Devinatz and Hopkins and some results due to Behrens and the first author of this paper show that if $X$ is a finite spectrum, then the localization $L_{K(n)}(X)$ is equivalent to the homotopy fixed point spectrum $(L_{K(n)}(E_n \wedge X))^{hG_n}$, which is formed with respect to the continuous action of $G_n$ on $L_{K(n)}(E_n \wedge X)$. In this paper, we show that this equivalence holds for any ($S$-cofibrant) spectrum $X$. Also, we show that for all such $X$, the strongly convergent Adams-type spectral sequence abutting to $\pi _\ast (L_{K(n)}(X))$ is isomorphic to the descent spectral sequence that abuts to $\pi _\ast ((L_{K(n)}(E_n \wedge X))^{hG_n}).$References
- Mark Behrens and Daniel G. Davis, The homotopy fixed point spectra of profinite Galois extensions, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4983–5042. MR 2645058, DOI 10.1090/S0002-9947-10-05154-8
- Daniel G. Davis, Homotopy fixed points for $L_{K(n)}(E_n\wedge X)$ using the continuous action, J. Pure Appl. Algebra 206 (2006), no. 3, 322–354. MR 2235364, DOI 10.1016/j.jpaa.2005.06.022
- Ethan S. Devinatz, A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra, Trans. Amer. Math. Soc. 357 (2005), no. 1, 129–150. MR 2098089, DOI 10.1090/S0002-9947-04-03394-X
- Ethan S. Devinatz and Michael J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), no. 1, 1–47. MR 2030586, DOI 10.1016/S0040-9383(03)00029-6
- P. G. Goerss and M. J. Hopkins, Moduli spaces of commutative ring spectra, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151–200. MR 2125040, DOI 10.1017/CBO9780511529955.009
- Mark Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture, The Čech centennial (Boston, MA, 1993) Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 225–250. MR 1320994, DOI 10.1090/conm/181/02036
- Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, DOI 10.1090/S0894-0347-99-00320-3
- M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram spectra, Proc. London Math. Soc. (3) 82 (2001), no. 2, 441–512. MR 1806878, DOI 10.1112/S0024611501012692
- Haynes R. Miller, On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space, J. Pure Appl. Algebra 20 (1981), no. 3, 287–312. MR 604321, DOI 10.1016/0022-4049(81)90064-5
- Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. (2) 106 (1977), no. 3, 469–516. MR 458423, DOI 10.2307/1971064
- Jack Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. (2) 121 (1985), no. 1, 1–39. MR 782555, DOI 10.2307/1971192
- John Rognes, Galois extensions of structured ring spectra. Stably dualizable groups, Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137. MR 2387923, DOI 10.1090/memo/0898
Bibliographic Information
- Daniel G. Davis
- Affiliation: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
- Email: dgdavis@louisiana.edu
- Takeshi Torii
- Affiliation: Department of Mathematics, Faculty of Science, Okayama University, Okayama 700-8530, Japan
- Email: torii@math.okayama-u.ac.jp
- Received by editor(s): December 17, 2010
- Published electronically: July 18, 2011
- Additional Notes: The first author was partially supported by a grant (LEQSF(2008-11)-RD-A-27) from the Louisiana Board of Regents.
- Communicated by: Brooke Shipley
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1097-1103
- MSC (2010): Primary 55P42, 55T15
- DOI: https://doi.org/10.1090/S0002-9939-2011-11189-4
- MathSciNet review: 2869094