Stable solutions of elliptic equations on Riemannian manifolds with Euclidean coverings
Authors:
Alberto Farina, Yannick Sire and Enrico Valdinoci
Journal:
Proc. Amer. Math. Soc. 140 (2012), 927-930
MSC (2010):
Primary 35J05, 58J05, 35B53, 35R01
DOI:
https://doi.org/10.1090/S0002-9939-2011-11241-3
Published electronically:
July 13, 2011
MathSciNet review:
2869076
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We investigate the rigidity properties of stable, bounded solutions of semilinear elliptic partial differential equations in Riemannian manifolds that admit a Euclidean universal covering, finding conditions under which the level sets are geodesics or the solution is constant.
- L. Dupaigne and A. Farina, Stable solutions of $-\Delta u=f(u)$ in $\Bbb R^N$, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 855–882. MR 2654082, DOI https://doi.org/10.4171/JEMS/217
- Ennio De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978) Pitagora, Bologna, 1979, pp. 131–188. MR 533166
- Manuel del Pino, Michał Kowalczyk, and Juncheng Wei, A counterexample to a conjecture by De Giorgi in large dimensions, C. R. Math. Acad. Sci. Paris 346 (2008), no. 23-24, 1261–1266 (English, with English and French summaries). MR 2473304, DOI https://doi.org/10.1016/j.crma.2008.10.010
- Louis Dupaigne, Stable solutions of elliptic partial differential equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 143, Chapman & Hall/CRC, Boca Raton, FL, 2011. MR 2779463
- Alberto Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\Bbb R^N$, J. Math. Pures Appl. (9) 87 (2007), no. 5, 537–561 (English, with English and French summaries). MR 2322150, DOI https://doi.org/10.1016/j.matpur.2007.03.001
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI https://doi.org/10.1007/BF01394782
- Doris Fischer-Colbrie and Richard Schoen, The structure of complete stable minimal surfaces in $3$-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33 (1980), no. 2, 199–211. MR 562550, DOI https://doi.org/10.1002/cpa.3160330206
- Alberto Farina, Berardino Sciunzi, and Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 4, 741–791. MR 2483642
- Alberto Farina, Yannick Sire, and Enrico Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds, preprint (2008), www.mat.uniroma2.it/ $\sim$valdinoc/manifold.pdf.
- Alberto Farina and Enrico Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, Recent progress on reaction-diffusion systems and viscosity solutions, World Sci. Publ., Hackensack, NJ, 2009, pp. 74–96. MR 2528756, DOI https://doi.org/10.1142/9789812834744_0004
- Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine, Riemannian geometry, 2nd ed., Universitext, Springer-Verlag, Berlin, 1990. MR 1083149
- Shuichi Jimbo, On a semilinear diffusion equation on a Riemannian manifold and its stable equilibrium solutions, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), no. 10, 349–352. MR 778527
- Frank Pacard and Juncheng Wei, Stable solutions of the Allen-Cahn equation in dimension $8$ and minimal cones, preprint (2011), http://arxiv.org/abs/1102.3446.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J05, 58J05, 35B53, 35R01
Retrieve articles in all journals with MSC (2010): 35J05, 58J05, 35B53, 35R01
Additional Information
Alberto Farina
Affiliation:
LAMFA, CNRS UMR 6140, Université de Picardie Jules Verne, Amiens, France
Email:
alberto.farina@u-picardie.fr
Yannick Sire
Affiliation:
LATP, Université Aix-Marseille 3, Marseille, France
MR Author ID:
734674
Email:
sire@cmi.univ-mrs.fr
Enrico Valdinoci
Affiliation:
Dipartimento di Matematica, Università di Roma Tor Vergata, Rome, Italy
MR Author ID:
659058
Email:
enricovaldinoci@gmail.com
Received by editor(s):
December 15, 2010
Published electronically:
July 13, 2011
Additional Notes:
The third author has been supported by FIRB Analysis and Beyond.
Communicated by:
Matthew J. Gursky
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.