Integral representations for Neumann-type series of Bessel functions $I_\nu ,$ $Y_\nu$ and $K_\nu$
HTML articles powered by AMS MathViewer
- by Árpád Baricz, Dragana Jankov and Tibor K. Pogány
- Proc. Amer. Math. Soc. 140 (2012), 951-960
- DOI: https://doi.org/10.1090/S0002-9939-2011-11402-3
- Published electronically: October 5, 2011
- PDF | Request permission
Abstract:
Recently Pogány and Süli [Proc. Amer. Math. Soc. 137(7) (2009), 2363–2368] derived a closed-form integral expression for Neumann series of Bessel functions of the first kind $J_\nu$. In this paper our aim is to establish analogous integral representations for the Neumann-type series of modified Bessel functions of the first kind $I_\nu$ and for Bessel functions of the second kind $Y_\nu , K_\nu$, and to give links for the same question for the Hankel functions $H_\nu ^{(1)}, H_\nu ^{(2)}$.References
- Horst Alzer, Sharp inequalities for the beta function, Indag. Math. (N.S.) 12 (2001), no. 1, 15–21. MR 1908136, DOI 10.1016/S0019-3577(01)80002-1
- Árpád Baricz, Bounds for modified Bessel functions of the first and second kinds, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 575–599. MR 2720238, DOI 10.1017/S0013091508001016
- Á. Baricz, D. Jankov, T. K. Pogány, Turán type inequalities for Krätzel functions (submitted).
- Mourad E. H. Ismail, Complete monotonicity of modified Bessel functions, Proc. Amer. Math. Soc. 108 (1990), no. 2, 353–361. MR 993753, DOI 10.1090/S0002-9939-1990-0993753-9
- D. Jankov, T. K. Pogány, E. Süli, On coefficients of Neumann series of Bessel functions, J. Math. Anal. Appl. 380(2) (2011), 628–631.
- J. Karamata, Teorija i Praksa Stieltjesova Integrala, Srpska Akademija Nauka. Posebna Izdanja, Kn. 144, Matematički Institut, Kn. 1., Belgrade, 1949 (Polish). MR 0033357
- Andrea Laforgia, Bounds for modified Bessel functions, J. Comput. Appl. Math. 34 (1991), no. 3, 263–267. MR 1102583, DOI 10.1016/0377-0427(91)90087-Z
- Tibor K. Pogány and Endre Süli, Integral representation for Neumann series of Bessel functions, Proc. Amer. Math. Soc. 137 (2009), no. 7, 2363–2368. MR 2495270, DOI 10.1090/S0002-9939-09-09796-2
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Bibliographic Information
- Árpád Baricz
- Affiliation: Department of Economics, Babeş-Bolyai University, 400591 Cluj-Napoca, Romania
- MR Author ID: 729952
- Email: bariczocsi@yahoo.com
- Dragana Jankov
- Affiliation: Department of Mathematics, University of Osijek, 31000 Osijek, Croatia
- Email: djankov@mathos.hr
- Tibor K. Pogány
- Affiliation: Faculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia
- Email: poganj@pfri.hr
- Received by editor(s): December 17, 2010
- Published electronically: October 5, 2011
- Additional Notes: The research of the first-named author was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the Romanian National Authority for Scientific Research CNCSIS-UEFISCSU, project number PN-II-RU-PD388/2010.
- Communicated by: Sergei K. Suslov
- © Copyright 2011 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 951-960
- MSC (2010): Primary 40H05, 40A30; Secondary 33C10
- DOI: https://doi.org/10.1090/S0002-9939-2011-11402-3
- MathSciNet review: 2869079