On the set where the iterates of an entire function are bounded
HTML articles powered by AMS MathViewer
- by Walter Bergweiler
- Proc. Amer. Math. Soc. 140 (2012), 847-853
- DOI: https://doi.org/10.1090/S0002-9939-2011-11456-4
- Published electronically: November 3, 2011
- PDF | Request permission
Abstract:
We show that for a transcendental entire function the set of points whose orbit under iteration is bounded can have arbitrarily small positive Hausdorff dimension.References
- I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252–256. MR 226009, DOI 10.1007/BF01110294
- I. N. Baker, The domains of normality of an entire function, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 277–283. MR 0402044
- Krzysztof Barański, Bogusława Karpińska, and Anna Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, Int. Math. Res. Not. IMRN 4 (2009), 615–624. MR 2480096, DOI 10.1093/imrn/rnn141
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- Walter Bergweiler, A new proof of the Ahlfors five islands theorem, J. Anal. Math. 76 (1998), 337–347. MR 1676971, DOI 10.1007/BF02786941
- Walter Bergweiler, The role of the Ahlfors five islands theorem in complex dynamics, Conform. Geom. Dyn. 4 (2000), 22–34. MR 1741773, DOI 10.1090/S1088-4173-00-00057-6
- Walter Bergweiler, Philip J. Rippon, and Gwyneth M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 368–400. MR 2439666, DOI 10.1112/plms/pdn007
- J. P. R. Christensen and P. Fischer, Ergodic invariant probability measures and entire functions, Acta Math. Hungar. 73 (1996), no. 3, 213–218. MR 1415932, DOI 10.1007/BF02181052
- A. È. Erëmenko, On the iteration of entire functions, Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ., vol. 23, PWN, Warsaw, 1989, pp. 339–345. MR 1102727
- A. È. Erëmenko and M. Ju. Ljubich, Examples of entire functions with pathological dynamics, J. London Math. Soc. (2) 36 (1987), no. 3, 458–468. MR 918638, DOI 10.1112/jlms/s2-36.3.458
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Feliks Przytycki and Mariusz Urbański, Conformal fractals: ergodic theory methods, London Mathematical Society Lecture Note Series, vol. 371, Cambridge University Press, Cambridge, 2010. MR 2656475, DOI 10.1017/CBO9781139193184
- Lasse Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1411–1420. MR 2465667, DOI 10.1090/S0002-9939-08-09650-0
- Lasse Rempe and Gwyneth M. Stallard, Hausdorff dimensions of escaping sets of transcendental entire functions, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1657–1665. MR 2587450, DOI 10.1090/S0002-9939-09-10104-1
- P. J. Rippon and G. M. Stallard, Escaping points of meromorphic functions with a finite number of poles, J. Anal. Math. 96 (2005), 225–245. MR 2177186, DOI 10.1007/BF02787829
- P. J. Rippon and G. M. Stallard, Dimensions of Julia sets of meromorphic functions with finitely many poles, Ergodic Theory Dynam. Systems 26 (2006), no. 2, 525–538. MR 2218773, DOI 10.1017/S0143385705000544
- —, Fast escaping points of entire functions. Preprint, arXiv:1009.5081v1.
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions, J. London Math. Soc. (2) 49 (1994), no. 2, 281–295. MR 1260113, DOI 10.1112/S0024610799008029
- Gwyneth M. Stallard, The Hausdorff dimension of Julia sets of entire functions. II, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 3, 513–536. MR 1357062, DOI 10.1017/S0305004100074387
- Gwyneth M. Stallard, Dimensions of Julia sets of transcendental meromorphic functions, Transcendental dynamics and complex analysis, London Math. Soc. Lecture Note Ser., vol. 348, Cambridge Univ. Press, Cambridge, 2008, pp. 425–446. MR 2458811, DOI 10.1017/CBO9780511735233.017
- Michel Zinsmeister, Thermodynamic formalism and holomorphic dynamical systems, SMF/AMS Texts and Monographs, vol. 2, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2000. Translated from the 1996 French original by C. Greg Anderson. MR 1724307
Bibliographic Information
- Walter Bergweiler
- Affiliation: Mathematisches Seminar, Christian–Albrechts–Universität zu Kiel, Ludewig–Meyn–Str. 4, D–24098 Kiel, Germany
- MR Author ID: 35350
- Email: bergweiler@math.uni-kiel.de
- Received by editor(s): December 6, 2010
- Published electronically: November 3, 2011
- Additional Notes: The author was supported by a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Grant No. 2010 TIJ10. He was also supported by the Deutsche Forschungsgemeinschaft, Be 1508/7-1, the EU Research Training Network CODY and the ESF Networking Programme HCAA
- Communicated by: Mario Bonk
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 847-853
- MSC (2010): Primary 37F10, 30D05, 37F35
- DOI: https://doi.org/10.1090/S0002-9939-2011-11456-4
- MathSciNet review: 2869069