Hochschild homology and truncated cycles
HTML articles powered by AMS MathViewer
- by Petter Andreas Bergh, Yang Han and Dag Madsen
- Proc. Amer. Math. Soc. 140 (2012), 1133-1139
- DOI: https://doi.org/10.1090/S0002-9939-2011-10942-0
- Published electronically: November 23, 2011
- PDF | Request permission
Abstract:
We study algebras having $2$-truncated cycles and show that these algebras have infinitely many nonzero Hochschild homology groups. Consequently, algebras of finite global dimension have no $2$-truncated cycles and therefore satisfy a higher version of the “no loops conjecture”.References
- Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. Techniques of representation theory. MR 2197389, DOI 10.1017/CBO9780511614309
- Luchezar L. Avramov and Srikanth Iyengar, Gaps in Hochschild cohomology imply smoothness for commutative algebras, Math. Res. Lett. 12 (2005), no. 5-6, 789–804. MR 2189239, DOI 10.4310/MRL.2005.v12.n6.a1
- Luchezar L. Avramov and Micheline Vigué-Poirrier, Hochschild homology criteria for smoothness, Internat. Math. Res. Notices 1 (1992), 17–25. MR 1149001, DOI 10.1155/S1073792892000035
- Petter Andreas Bergh and Dag Madsen, Hochschild homology and global dimension, Bull. Lond. Math. Soc. 41 (2009), no. 3, 473–482. MR 2506831, DOI 10.1112/blms/bdp018
- Petter Andreas Bergh and Dag Madsen, Hochschild homology and split pairs, Bull. Sci. Math. 134 (2010), no. 7, 665–676. MR 2725172, DOI 10.1016/j.bulsci.2010.07.003
- Ragnar-Olaf Buchweitz, Edward L. Green, Dag Madsen, and Øyvind Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005), no. 5-6, 805–816. MR 2189240, DOI 10.4310/MRL.2005.v12.n6.a2
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Claude Cibils, Cyclic and Hochschild homology of $2$-nilpotent algebras, $K$-Theory 4 (1990), no. 2, 131–141. MR 1081656, DOI 10.1007/BF00533153
- Samuel Eilenberg, Hirosi Nagao, and Tadasi Nakayama, On the dimension of modules and algebras. IV. Dimension of residue rings of hereditary rings, Nagoya Math. J. 10 (1956), 87–95. MR 78981
- Yang Han, Hochschild (co)homology dimension, J. London Math. Soc. (2) 73 (2006), no. 3, 657–668. MR 2241972, DOI 10.1112/S002461070602299X
- Dieter Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 108–126. MR 1035222, DOI 10.1007/BFb0084073
- Kiyoshi Igusa, Notes on the no loops conjecture, J. Pure Appl. Algebra 69 (1990), no. 2, 161–176. MR 1086558, DOI 10.1016/0022-4049(90)90040-O
- Kiyoshi Igusa and Dan Zacharia, On the cyclic homology of monomial relation algebras, J. Algebra 151 (1992), no. 2, 502–521. MR 1184046, DOI 10.1016/0021-8693(92)90125-6
- Emil Sköldberg, The Hochschild homology of truncated and quadratic monomial algebras, J. London Math. Soc. (2) 59 (1999), no. 1, 76–86. MR 1688490, DOI 10.1112/S0024610799007036
- Andrea Solotar and Micheline Vigué-Poirrier, Two classes of algebras with infinite Hochschild homology, Proc. Amer. Math. Soc. 138 (2010), no. 3, 861–869. MR 2566552, DOI 10.1090/S0002-9939-09-10168-5
Bibliographic Information
- Petter Andreas Bergh
- Affiliation: Institutt for Matematiske FAG, NTNU, N-7491 Trondheim, Norway
- MR Author ID: 776982
- Email: bergh@math.ntnu.no
- Yang Han
- Affiliation: KLMM, AMSS, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Email: hany@iss.ac.cn
- Dag Madsen
- Affiliation: Department of Mathematics, 215 Carnegie, Syracuse University, Syracuse, New York 13244-1150
- Address at time of publication: Profesjonshøgskolen, Universitetet i Nordland, 8049 Bodø, Norway
- MR Author ID: 639380
- Email: dmadsen@syr.edu, dag.oskar.madsen@uin.no
- Received by editor(s): July 12, 2010
- Received by editor(s) in revised form: October 27, 2010, and November 26, 2010
- Published electronically: November 23, 2011
- Additional Notes: The first author was supported by NFR Storforsk grant No. 167130
The second author was supported by Project 10731070 NSFC - Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1133-1139
- MSC (2010): Primary 16E40
- DOI: https://doi.org/10.1090/S0002-9939-2011-10942-0
- MathSciNet review: 2869099
Dedicated: Dedicated to Professor Claus Michael Ringel on the occasion of his 65th birthday