
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 140, Number 4, April 2012, Pages 1267–1279
S 0002-9939(2011)10969-9
Article electronically published on July 19, 2011

INCREASING DIGIT SUBSYSTEMS

OF INFINITE ITERATED FUNCTION SYSTEMS

THOMAS JORDAN AND MICHA�L RAMS

(Communicated by Bryna Kra)

Abstract. We consider an infinite iterated function system {fi}∞i=1 on [0, 1]
with a polynomially increasing contraction rate. We look at subsets of such
systems where we only allow iterates fi1 ◦ fi2 ◦ fi3 ◦ · · · if in > Φ(in−1) for
certain increasing functions Φ : N → N. We compute both the Hausdorff and
packing dimensions of such sets. Our results generalise work of Ramharter
which shows that the set of continued fractions with strictly increasing digits
has Hausdorff dimension 1

2
.

1. Introduction

In this paper we consider certain subsets of the attractors of infinite iterated
function systems. For each n ∈ N we will let fn : [0, 1] → [0, 1] be C1 maps such
that:

(1) There exists m ∈ N and 0 < A < 1 such that for all (a1, . . . , am) ∈ N
m and

for all x ∈ [0, 1],

0 < |(fa1
◦ · · · ◦ fam

)′(x)| ≤ A < 1.

(2) For any i, j ∈ N, fi((0, 1)) ∩ fj((0, 1)) = ∅.
(3) There exist d > 1 such that for any ε > 0 there exist C1(ε), C2(ε) > 0

such that for i ∈ N there exist constants λi, ξi such that for all x ∈ [0, 1],
ξi ≤ |f ′

i(x)| ≤ λi and

C1

id+ε
≤ ξi ≤ λi ≤

C2

id−ε
.

We will call such a system a d-decaying system.
There will be a natural projection Π : NN → [0, 1] defined by

Π(a) = lim
n→∞

fa1
◦ · · · ◦ fan

(1).

We will denote Λ = Π(NN) as the attractor of the system. We will let T : Λ → Λ
be the expanding map defined by T (x) = f−1

i (x) if x ∈ fi([0, 1]). If x = Π(a), then
we will refer to {an}n∈N as the digits of x (these are not necessarily unique). For
brevity of notation for x ∈ Λ, {ai(x)}i∈N will denote a sequence a ∈ N

N such that
Π(a) = x.
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We are interested in the set of x where the digits are increasing monotonically.
For a function Φ : N → R which satisfies that Φ(n) ≥ n we will denote

(1.1) XΦ = Π{a : an+1 > Φ(an) for all n ∈ N}.
We will be looking at the dimension of these sets for various different notions of
dimension. We will be considering Hausdorff dimension, denoted dimH , packing
dimension, denoted dimP and upper box counting dimension denoted dimB. For
the definitions of these notions of dimension the reader is referred to [F1]. Our
motivation for this work is in part to look at iterated function systems with a
transient Markov condition; for instance, such systems clearly cannot support an
invariant measure. These sets would also have significance when the infinite system
is a first return map for a dynamical system F and an interval J since they would
represent points where the orbit would take longer and longer to return to the
interval J . For example if F is the Farey map, T is the Gauss map and rn(x)
denotes the nth return time of the F orbit of x to (1/2, 1), then

XΦ = {x : rn+1(x) > Φ(rn(x)}.
Another aim is to generalise results for the Gauss map to more general systems.
Our first result is the following.

Theorem 1.1. Let Φ : N → R satisfy that for some β ≥ 1 we have n ≤ Φ(n) ≤ βn
for all n ∈ N . We then have that

dimH XΦ =
1

d
.

Considering packing dimension instead of Hausdorff dimension we obtain the
following, stronger result:

Theorem 1.2. Let s0 = dimB({fi(0)}∞i=1) and Φ : N → R satisfy that Φ(n) ≥ n.
Then we have that

dimP XΦ = max

{
s0,

1

d

}
.

To look at dimH XΦ for functions Φ : N → R where the growth rate is quicker
than a linear rate we restrict ourselves to a certain class of d-decaying systems. We
will call an iterated function system, {fn}n∈N, Gauss-like if

∞⋃
i=0

fi([0, 1]) = [0, 1]

and if for all x ∈ [0, 1] we have that fi(x) < fj(x) implies i > j. We then have that

Theorem 1.3. If {fi}∞i=1 is a Gauss-like system, α > 1 and Φ(n) = nα, then

dimH XΦ =
1

1 + α(d− 1)
.

Previous work on this type of problem has been done in the case of continued
fractions. Here the maps fn : [0, 1] → [0, 1] can be defined by fn(x) = 1

x+n for

each n ∈ N. In 1941 Good ([G]) showed that the set where limi→∞ ai = ∞ has
dimension 1

2 and this was extended by Ramharter [R] to show that the set of x

with strictly increasing continued fraction exponents has dimension 1
2 . We will

show that this dimension is unchanged if we use the stronger condition ai+1 > βai
for β > 1 and for all i ∈ N. However, on the other hand, we will show that if we
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have the condition ai+1(x) > (ai(x))
α for all i ∈ N and α > 1, then the dimension

does drop below 1
2 . Subsequent to the work of Good, several papers, e.g. [L] and

[WW], have added conditions on the rate of convergence of the ai to infinity either
along sequences or subsequences. In particular, Wang and Wu [WW] calculate the
Hausdorff dimension of the set where ai(x) ≥ Φ(x) for infinitely many n for any
function Φ. In Lemma 3.2 in [FL], the Hausdorff dimension of sets, where the
value of an+1(x) is bounded by sn and NSn

for a constant N and some sequence
sn where sn → ∞ as n → ∞ are calculated. In [Mu] the dimensions of related sets
are considered in the case where each map fi is a similarity.

In this setting of continued fractions, Theorem 1.1 and Theorem 1.3 have the
following corollary:

Corollary 1.4. If we denote the continued fraction expansion of x by a1(x), a2(x),
a3(x), ..., then we have that

(1) for any β ≥ 1 we have that

dimH{x : ai+1(x) > βai(x) for all i ∈ N} =
1

2
;

(2) for any α > 1 we have that

dimH{x : ai+1(x) > (ai(x))
α for all i ∈ N} =

1

1 + α
.

It should be noted that in part (1) of the corollary, the case where β = 1 was
shown by Ramharter in [R]. The second part of this corollary relates to the work
by �Luczak in [L]. Here for α, β > 1 the sets

Θ[α, β] = {x : an(x) ≥ βαn

for all n ∈ N}

are considered (where ai(x) denote the continued fraction digits of x). It is shown
that dimΘ[α, β] = 1

1+α , which corresponds with the dimension found in part (2)
of Corollary 1.4. This connection is no surprise since if we have that ai+1 > aαi for
all i ∈ N, then an(x) > a1(x)

αn

.
Finally we can show that Theorem 1.3 does not hold if we consider more general

systems. In particular if there are gaps between the first level cylinders, then the
situation can be significantly different as illustrated by the following theorem:

Theorem 1.5. For any d > 1 and any strictly increasing function Φ : N → N there
exists a d-decaying system {fi}∞i=1 such that

dimH XΦ =
1

d
.

Throughout the paper, if x ∈ Λ, we will denote the nth-level cylinder containing
x by

Cn(x) := fa1(x) ◦ · · · ◦ fan(x)([0, 1]).

The rest of the paper is laid out as follows. In section 2 we prove some lemmas which
are the key to the proofs of our main theorems. Theorem 1.1 and Theorem 1.2 are
then proved in section 3. Finally, sections 4 and 5 are devoted to the proofs of
Theorems 1.3 and 1.5 respectively.
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2. Key lemmas

In this section we prove a series of lemmas which will be used in the following
sections. We start with two lemmas needed to prove the upper bound for Theo-
rems 1.1 and 1.2. We fix d > 1 and a d-decaying iterated function system {fi}∞i=1.
For a positive integer k we will use Λk to denote the attractor of the system {fi}∞i=k.

Lemma 2.1.

lim
k→∞

dimH Λk =
1

d
.

Proof. In the case of the Gauss map this result is contained in the work of Good [G],
and the precise asymptotic for the rate of convergence is given in [JK]. For more
general systems it will follow from Bowen’s formula for the Hausdorff dimension
of infinite iterated function systems given in [MU]. However some of the systems
we are considering do not satisfy the assumptions in [MU], and so we include a
proof. First of all we prove that dimH Λk ≥ 1

d . We fix any s < 1
d . We can

then find m ∈ N such that
∑m

i=k+1 ξ
s
i ≥ 1. Consider the iterated function system

consisting of the maps fk, . . . , fm and let Λk,m ⊂ Λ, be the attractor. By standard
results for iterated function systems, dimH Λm,k ≥ sm, where sm is the solution to∑m

i=k+1 ξ
sm
i = 1, and we know by definition that sm ≥ s. Since this holds for any

s < 1
d we know that dimH Λ ≥ 1

d .

To obtain the upper bound we fix s > 1
d and choose k such that

∑∞
i=k λ

s
i ≤ 1.

For convenience we will denote N(k) to be the set of natural numbers greater than
or equal to k. We get that∑

(a1,...,an)∈N(k)n

|a1, . . . , an|s ≤
∑

(a1,...,an)∈N(k)n

(λa1
· · ·λan

)s

≤
( ∞∑

i=k

λs
i

)n

≤ 1.

It then follows that dimH Λk ≤ s. Thus for every s > 1
d we can find k such

that dimH Λk ≤ s since dimH Λk is clearly monotonically decreasing. The result
follows. �

We also need an analogue of Lemma 2.1 in terms of upper box dimension or
equivalently packing dimension. We will let

s0 = dimB({fi(0)}∞i=1).

Note that instead of 0 we could take any other point of the interval [0, 1] and the
value of s0 would not change.

Lemma 2.2.

lim
k→∞

dimP Λk ≤ max

{
1

d
, s0

}
.

Proof. Let ε > 0, δ � ε and let K be sufficiently large such that
∞∑

i=K

(C2(δ))
d−1+εi−(d−δ)(d−1+ε) ≤ 1.

We will fix K−d < λ < 1. We can find a constant N0 > 0 such that for any integer

n ≥ 0 we can cover {fj(v)}∞j=1 by N0λ
−n(s0+ε) intervals of size C1(δ)

C2(δ)
λ(1+2δ/d)n.
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We let N(K)∗ denote all finite words formed from the alphabet N(K). Let

An = {ω ∈ N(K)∗ : λn > |fω([0, 1])| ≥ λn+1}.

We have that #An ≤ λ−(n+1)(d−1+ε). We now fix an integer N > 0 and find a cover
of ΛK with intervals of length λN . Let 0 < n ≤ N and let ω ∈ An. We denote

D(ω) =
⋃

{fω ◦ fj([0, 1]) : |fω ◦ fj([0, 1])| ≤ λN},

where j ∈ N. We have that

Λk ⊂
N⋃

n=0

⋃
ω∈An

D(ω).

We know that {fj(0)}∞j=1 can be covered by at most N0λ
−(N−n)(s0+ε) intervals of

size C1(δ)
C2(δ)

λ(1+2δ/d)(N−n), and so for ω ∈ An, D(ω) can be covered byN1λ
(n−N)(s0+ε)

intervals of size λ−N for a constant 0 < N1 ≤ 3N0. Therefore we have that ΛK can
be covered by

N1

N∑
n=0

λ−(n+1)(d−1+ε)−(N−n)(s0+ε)

intervals of size λN . Thus

dimBΛK ≤ lim sup
n→∞

log
∑N

n=0 λ
−n(d−1+ε)−(N−n)(s0+ε)

−N log λ
≤ max{d−1, s0}+ ε.

Applying Theorem 3.1 in [MU] completes the proof. �

We now let Φ : N → R satisfy Φ(n) ≥ n for all n ∈ N and let the set XΦ be as
defined in (1.1). To prove the lower bounds in Theorems 1.1 and 1.2 we introduce
certain subsets of XΦ which we will use in order to define a measure supported on
XΦ. For any natural n let l(n) be the minimal natural number such that

(2.1)

l(n)∑
i=[Φ(n)]+1

ξ
1/d−ε
i ≥ 1,

where [Φ(n)] denotes the integer part of Φ(n). Let K be the smallest integer such
that for any k ≥ K we have

k−d−ε ≤ ξk ≤ λk ≤ k−d+ε.

We then define {ln}n∈N recursively by l1 = K and ln+1 = l(ln). Let YΦ,ε be a
subset of XΦ defined as

YΦ,ε = {x ∈ [0, 1] : Φ(ln) < an(x) ≤ ln+1}.

Lemma 2.3. There exist γ > 1 such that

ln+1

Φ(ln)
< γ

for all n.
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Proof. By assumption we have that C1i
−d−ε ≤ ξi ≤ C2i

−d+ε. Thus we have that
if n is sufficiently large,

2 ≥
l(n)∑

i=Φ(n)+1

ξ
1/d−ε
i ≥ C2

∫ l(n)

Φ(n)+1

s(−d+ε)(1/d−ε)ds.

Evaluating this integral and using the fact that for ε sufficiently small 2(d+ 1
d−ε)ε <

1, we obtain that

l(n)(d+
1
d−ε)ε ≤ 2Φ(n)(d+

1
d−ε)ε,

and the result easily follows. �
The following lemma is the key to the lower bound for Theorems 1.1, 1.2 and

1.5.

Lemma 2.4. We can define a probability measure ν supported on YΦ,ε such that

(1) ν(Cn(x)) < |Cn(x)|1/d−ε for all x ∈ YΦ,ε.
(2) For ν almost all x ∈ YΦ,ε,

lim sup
r→0

log(ν(B(x, r)))

log r
≥ 1

d
− ε.

Proof. We start by fixing a positive integer n and considering the set of integers
I(n) := {Φ(ln) + 1, . . . , ln+1}. We will then refine this set by removing the integers
which refer to the left-most and right-most intervals. To be precise let

I ′(n) = {i ∈ I(n) : ∃j, k ∈ I(n) with fj([0, 1]) ≤ fi([0, 1]) ≤ fk([0, 1])}
(where J1 ≤ J2 is to be understood as: interval J1 is to the left of interval J2). We
denote by sn the value such that ∑

i∈I′(n)

ξsni = 1

and note that each sn ≥ 1
d − ε. For each n we will define a finite measure μn

supported on the finite σ-algebra given by the sets {fi([0, 1])}i∈I′(n) and satisfying

that μn(Cωi
) = ξsni . We can then let νn =

⊗n−1
k=0 μk◦T k and note that the extension

ν of these measures (Kolmogorov) will be supported on a subset of Yβ,ε.
Note that for any cylinder Cω1...ωn

we have that

ν(Cω1...ωn
) = ξs1ω1

· · · ξsnωn

and we can immediately deduce (1).
For (2) let x ∈ supp(μ) and fix an n. We can then deduce that an+1(x) ∈ I ′(n).

Now consider the set of cylinders

Zn = {Π([a1(x), . . . , an(x), j])}j∈I(n)

and let Rn = minj∈I(n) ξa1(x) · · · ξan(x)ξj . We know that x ∈ [a1(x), . . . , an(x), j]
for some j ∈ I ′(n). Therefore B(x,Rn) ⊂ Cn(x) and B(x,Rn) will intersect at most
two members of Zn. Therefore we have that

μ(B(x,Rn)) ≤ 2C
sn+1

2 ξs1a1(x)
· · · ξsnan(x)

(Φ(ln) + 1)sn+1(−d+ε)

≤ 2γ−sn+1(−d−ε)l2εn+1C
sn+1

2 (ξa1(x) · · · ξan(x))
1/d−ε(ln+1)

sn+1(−d−ε).
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Thus if we take logarithms we have that

log μ(B(x,Rn)) ≤ (1/d− ε) logRn + 2ε log ln+1 + o(− logRn),

and to complete the proof we notice that − log ln+1/ logRn is uniformly bounded.
�

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We fix d > 1, a d-decaying system {fi}∞i=1 and a function
Φ : N → R satisfying n ≤ Φ(n) ≤ βn for all n ∈ N and some β ≥ 1. To prove the
upper bound we note that for any k ∈ N,

XΦ ⊂
⋃
l≤k

⋃
a1<...<al≤k

fal
◦ . . . ◦ fa1

(Λk).

Since the maps fi are bi-Lipschitz, it then follows by Lemma 2.1 that dimH XΦ ≤ 1
d .

To compute the lower bound for any x ∈ XΦ and n ∈ N, we let rn(x) := |Cn(x)|.
We can freely assume that β is strictly greater than 1 (if Ψ ≥ Φ, then XΨ ⊂ XΦ).
We then have the following result.

Lemma 3.1. For any δ > 0 there exist l > 0 and N > 0 such that for any
x, y ∈ YΦ,ε and n > N we have

rn(x) > (rn+l(y))
1+δ .

Proof. By applying Lemma 2.3 we can calculate that for any l ∈ N,

rn(x)

(rn+l(y))1+δ
=

rn(x)

(rn(y))1+δ
·
(

rn(y)

rn+l(y)

)1+δ

≥
(

C1(δ/2d)

(C2(δ/2d)γ)1+δ

)n

· 1

(C1(δ/2d))l(1+δ)
βndl(1+δ).

Thus if we choose l large enough such that

βld(1+δ) > (C1(δ/2d))
l(1+δ)

(
(C2(δ/2d)γ)

1+δ

C1(δ/2d)

)
,

then the proof is complete. �

Hence, for any x ∈ YΦ,ε, n > N , and (rn+l+1(x))
1+δ ≤ r ≤ (rn+l(x))

1+δ, the set
Br(x) ∩ YΦ,ε will be contained in Cn(x) ∪ Cn(y) for some y ∈ YΦ,ε. We also have

r ≥ (rn+l+1(x))
1+δ > (rn+2l+1(y))

(1+δ)2 . Thus we will have

lim inf
r→0

log ν(Br(x))

log r
≥ lim inf

n→∞
inf

y∈Yβ,ε

(1/d− ε) log rn(y) + log 2

(1 + δ)2 log rn+2l+1(y)
.

The only thing missing in the proof of Theorem 1.1 is a comparison of sizes of rn(x)
and rn+1(x).

Lemma 3.2. There exists a sequence vn → 1 such that for every x ∈ Yβ,ε,

log rn+1(x)

log rn(x)
< vn.
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Proof. We have that

rn+1(x) ≥ ξan+1(x)rn(x).

Thus it suffices to show that
log ξan+1(x)

log rn(x)
tends to 0 uniformly in x. For ε > 0 we

have that for all x,

rn(x) ≤
n∏

i=1

C2

id−ε
≤ Cn

2

(n!)d−ε
.

On the other hand, by Lemma 2.3 and the definition of Φ,

ln+1 ≤ γΦ(ln) ≤ βγln.

Thus an+1(x) ≤ (βγ)n and so ξan+1(x) ≥ (βγ)−n(d+ε) and the result follows. �

Proof of Theorem 1.2. We fix d > 1, a d-decaying system {fi}∞i=1 and a function

Φ : N → R such that Φ(n) ≥ n. We will let s0 = dimB({fi(0)}∞i=1). To show that
dimP XΦ ≤ min{1/d, s0} we simply replicate the upper bound in the proof of
Theorem 1.1 with Lemma 2.2 replacing Lemma 2.1. The fact that dimP XΦ ≥ 1

d
can immediately be deduced from Lemma 2.4.

We now turn to the case where s0 ≥ 1
d . First we need to show that the upper

box counting dimension and the packing dimension of XΦ are the same.

Lemma 3.3. We have that for any function Φ : N → N with Φ(n) ≥ n,

dimP XΦ = dimBXΦ.

Proof. It can easily be seen that the proof of Theorem 3.1 in [MU] can be applied
in this situation. �

We let J denote the closure of XΦ and note that by Lemma 3.3 we can deduce
that dimP XΦ = dimBJ . We will let v be some accumulation point of {fi(1)}.
We then have that J ⊃ {fi(v)}∞i=1 and so dimBJ ≥ s0 and the result immediately
follows by Lemma 3.3.

4. Proof of Theorem 1.3

We fix d > 1, a Gauss-like d-decaying system {fi}∞i=1, α > 1 and let Φ(n) = nα.
Denote s = 1/(1 + α(d− 1)). It is enough to prove that for every K > 1,

dimH XΦ,K =
1

1 + α(d− 1)
,

where

XΦ,K = {x ∈ XΦ : a1(x) = K}.
Indeed, we have

XΦ,K ⊂ XΦ = {x0} ∪
∞⋃

n=0

∞⋃
K=2

fn
1 XΦ,K ,

where x0 is the fixed point of f1. We fix K > 1, δ > 0 and denote C1 = C1(δ), C2 =
C2(δ).

Given x ∈ XΦ we define

Δn(x) =
⋃

{Cn+1(y) : y ∈ Cn(x) ∩XΦ}.
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Obviously, it is the union of all (n + 1)-st level subcylinders of Cn(x), where the
(n+ 1)-st coordinate is at least an(x)

α. We have

Cn
1

n∏
i=1

ai(x)
−d−δ ≤ |Cn(x)| ≤ Cn

2

n∏
i=1

ai(x)
−d+δ

and

Cn+1
1 C−1

4 an(x)
−(d+δ−1)α

n∏
i=1

ai(x)
−d−δ ≤ |Δn(x)|

(4.1)

≤ Cn+1
2 C4an(x)

−(d−δ−1)α
n∏

i=1

ai(x)
−d+δ.

We will distribute on XΦ,K a probabilistic measure μ, satisfying μ(a1(x) = K) = 1
and

(4.2) μ(an+1(x) = j|an(x) = i) =

{
0 if j < iα,

cii
α(d−1)sj−(d+α(d−1))s if j > iα,

where

ci =
1∑

j>iα iα(d−1)sj−(d+α(d−1))s

is a normalising constant. It is easy to check that for some C3 > 1 we have

C−1
3 ≤ ci ≤ C3

for all i (in fact, ci → (d+ α(d− 1))s+ 1 as i → ∞).
The reason we have chosen the measure μ in this way is that for all x ∈ XΦ,K ,

we have for each n,

C−n
3

n∏
i=2

ai(x)
−ds · a1(x)α(d−1)san(x)

−α(d−1)s ≤ μ(Δn(x)) = μ(Cn(x))

≤ Cn
3

n∏
i=2

ai(x)
−ds · a1(x)α(d−1)san(x)

−α(d−1)s.

Comparing this with (4.1) we have that for all x ∈ XΦ,K ,

(4.3) C−1
6 C−n

5 |Δn(x)|(1+cδ)s ≤ μ(Δn(x)) ≤ C6C
n
5 |Δn(x)|(1−cδ)s.

Note that

(4.4) |Δn(x)| < |Cn(x)| ≤
n∏

i=1

C2K
−(d−δ)αi−1

= Cn
2 K

−(d−δ)(αn−1)/(α−1).

Hence for x ∈ XΦ,K we can calculate

log μ(B|Δn(x)|(x))

log |Δn(x)|
≤ log μ(ΔN (x))

log |Δn(x)|

≤ s(1 + cδ) +
o(− log |Δn(x)|)

log |Δn(x)|
.

Thus we can conclude that

dimH XΦ,K ≤ s(1 + cδ).
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For the lower bound on the Hausdorff dimension we will use the Frostman Lemma
again. Denote

rn(x) = |Δn(x)|, Rn(x) = |Cn(x)|.
We already know that

lim
n→∞

log μ(Δn(x))

log |Δn(x)|
≥ s(1− cδ).

Brn(x)(x) contains Δn(x) and might intersect at most one other Δn(y). Moreover,
this Δn(y) must be a neighbouring one, which means that ai(x) = ai(y) for i < n
and |an(x)− an(y)| = 1. Hence, by (4.3) we have that

μ(Brn(x)(x)) ≤ (2 + ε)C6C
n
5 rn(x)

(1−cδ)s.

We then have that

log μ(Brn(x)(x)) ≤ (1− cδ)s log rn + o(− log rn).

We need to use this estimate to find log μ(Br(x))
log r for rn(x) < r < Rn(x) and

Rn+1(x) < r < rn(x). The first of these ranges is easy: each Cn(x) \ Δn(x) has
length comparable to |Cn(x)|. Hence, the ball Br(x) for rn(x) < r < Rn(x) will
be much bigger than Brn(x)(x) but will still intersect at most Δn(x) plus one more
Δn(y). So, in this range

log μ(Br(x))

log r
≥ (1− cδ)s− o(1).

In the range Rn+1(x) < r < rn(x) the ball Br(x) will actually intersect several
Cn+1(y), y ∈ XΦ,K . Let us define

Dr(x) =
⋃

{Cn+1(y) : y ∈ XΦ,K ∩Br(x)}.

Note that μ(Dr(x)) ≥ μ(Br(x)) but |Dr(x)| ≤ 2Cn+1
2 /Cn+1

1 r1−δ. Hence, we can
use Dr(x) instead of Br(x) to estimate the local dimension of μ at x, and the
estimation will change at most by a factor (1± δ).

The set D = Dr(x) is a union of consecutive (n + 1)-st level cylinders Cn+1(y)
with ai(y) = ai(x) for i ≤ n and l1 ≤ an+1(y) ≤ l2, where l1 ≥ an(x)

α and

l2 ≤ ∞. We have Cn(x) =
⋃l2

i=l1
Cn+1(yi) (where yi is a point from Cn(x) ∩XΦ,K

with (n+ 1)-st symbol in the symbolic expansion equal to i). We have

|Cn+1(yi)| ≥ i−d|Cn(x)|1+cδ;

hence

|D| ≥ |Cn(x)|1+cδ
l2∑

i=l1

i−d ≈ (l
−(d−1)
1 − l

−(d−1)
2 )|Cn(x)|1+cδ.

We also have

|Δn+1(yi)| ≤ |Cn(x)|1−cδi−d−α(d−1);

hence by (4.3),

μ(D) =

l2∑
i=l1

μ(Δn+1(yi)) ≤ C6C
n+1
5 |Cn(x)|(1−2cδ)s

l2∑
i=l1

i−(d+α(d−1))s(1−cδ).
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Note that
l2∑

i=l1

i−(d+α(d−1))s(1−cδ) ≤ l
(d+α(d−1))scδ
2 ·

l2∑
i=l1

i−(d+α(d−1))s

≤ |D|−cαδ ·
l2∑

i=l1

i−(d+α(d−1))s.

Thus we have that

log μ(D) ≤ log

(
|Cn(x)|(1−2cδ)s

l2∑
i=l1

i−(d+α(d−1))s

)
− cαδ log |D|+ o(− log(|D|))

≈ log((l
−(d+α(d−1))s+1
1 − l

−(d+α(d−1))s+1
2 )|Cn(x)|(1−2cδ)s)

−cαδ log |D|+ o(− log(|D|))
= log((l

−(d−1)s
1 − l

−(d−1)s
2 )|Cn(x)|s) + o(− log(|D|)),

where we use that

(d+ α(d− 1))s− 1 = (d− 1)s.

By the concavity of the function x → xs for s < 1, we have that

a = bs ∧ c = ds =⇒ (a− c) ≤ (b− d)s.

Hence we can conclude that

log(μ(D)) ≤ s(1− (3 + α)cδ) log |D|+ o(− log |D|),
and the proof is complete. �

5. Proof of Theorem 1.5

We start by fixing an increasing function Φ : N → N and d > 1. We need to find
a d-decaying system {fi}∞i=1 such that

dimH XΦ =
1

d
.

We will fix ε > 0. As in section 3, we define by l(n) the smallest number for which

l(n)∑
i=Φ(n)+1

C1/d−εi−1+dε ≥ 1.

We define l1 = 1 and ln+1 = l(ln). As in Lemma 2.3, we have that

ln+1 < γΦ(ln)

for some γ > 1.
The system will be piecewise linear of the form Ti(x) =

C
id
x + ai. We will have

that

C =
1∑∞

i=1 i
−d +

∑∞
n=1 n

−2l−1
n+1(ln+1 − Φ(ln))

.

We define the constants ai recursively by letting a1 = 1− ci−d and let

an =

{
an−1 − Cn−d if n /∈ (Φ(ln), ln+1) for any n ∈ N,
an−1 − Cn−d − Cj−2l−1

j+1 if n ∈ (Φ(lj), lj+1) for some j ∈ N.
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As in section 3 and Lemma 2.4 we can define

(5.1) X̃Φ = {x : Φ(ln−1) + 1 ≤ an(x) ≤ ln(x)}
and distribute on X̃Φ a measure ν such that

ν(Cn(x)) ≤ |Cn(x)|(1/d−ε)

for all x ∈ X̃Φ. For x ∈ X̃Φ, let Zn(x) denote the minimal interval containing

Cn(x) ∩ X̃Φ. We can calculate

|Zn(x)| ≈ |Cn(x)|

⎛
⎝Cn−2l−1

n+1(ln+1 − Φ(ln)) +

ln+1∑
i=Φ(ln)

i−d

⎞
⎠

≈ n−2|Cn(x)|.
We can calculate that for any cylinder Cn(x), i �= j ∈ (Φ(ln), ln + 1] the cylinders
Cn+1(yi) and Cn+1(yj) will be separated by a gap of length at least Cn−2l−1

n+1.
Hence, for rn+1 < r ≤ rn,

μ(Br(x)) ≤ gn(r) =

(
1 + cr

n2(ln+1 − Φ(ln))

rn

)
r
1/d−ε
n+1

(where rn = |Cn(x)|). Note that

gn(r) ≤ cr1/d−ε

for r = rn and for r = rn+1, and gn(r) is a linear function in between. As x → x1/d

is a concave function, we have

gn(r) < cr1/d−ε

for rn+1 < r < rn. Hence,

lim inf
r→0

log μ(Br(x))

log r
≥ 1

d
− ε,

and the proof is complete. �
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Sci. Budapest. Eötvös Sect. Math. 28 (1985), 11–15. MR856971 (88a:11072)

[WW] Bao-Wei Wang and Jun Wu, Hausdorff dimension of certain sets arising in continued

fraction expansions, Adv. Math. 218 (2008), no. 5, 1319–1339. MR2419924 (2009d:11115)

School of Mathematics, The University of Bristol, University Walk, Clifton, Bris-

tol, BS8 1TW, United Kingdom

E-mail address: thomas.jordan@bristol.ac.uk

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956
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