## Unique continuation for discrete nonlinear wave equations

HTML articles powered by AMS MathViewer

- by Helge Krüger and Gerald Teschl PDF
- Proc. Amer. Math. Soc.
**140**(2012), 1321-1330 Request permission

## Abstract:

We establish unique continuation for various discrete nonlinear wave equations. For example, we show that if two solutions of the Toda lattice coincide for one lattice point in some arbitrarily small time interval, then they coincide everywhere. Moreover, we establish analogous results for the Toda, Kac–van Moerbeke, and Ablowitz–Ladik hierarchies. Although all these equations are integrable, the proof does not use integrability and can be adapted to other equations as well.## References

- Jean Bourgain,
*On the compactness of the support of solutions of dispersive equations*, Internat. Math. Res. Notices**9**(1997), 437–447. MR**1443322**, DOI 10.1155/S1073792897000305 - J. Bourgain,
*Anderson-Bernoulli models*, Mosc. Math. J.**5**(2005), no. 3, 523–536, 742 (English, with English and Russian summaries). MR**2241811**, DOI 10.17323/1609-4514-2005-5-3-523-536 - Jean Bourgain and Carlos E. Kenig,
*On localization in the continuous Anderson-Bernoulli model in higher dimension*, Invent. Math.**161**(2005), no. 2, 389–426. MR**2180453**, DOI 10.1007/s00222-004-0435-7 - W. Bulla, F. Gesztesy, H. Holden, and G. Teschl,
*Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies*, Mem. Amer. Math. Soc.**135**(1998), no. 641, x+79. MR**1432141**, DOI 10.1090/memo/0641 - L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega,
*On uniqueness properties of solutions of Schrödinger equations*, Comm. Partial Differential Equations**31**(2006), no. 10-12, 1811–1823. MR**2273975**, DOI 10.1080/03605300500530446 - L. D. Faddeev and L. A. Takhtajan,
*Hamiltonian methods in the theory of solitons*, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987. Translated from the Russian by A. G. Reyman [A. G. Reĭman]. MR**905674**, DOI 10.1007/978-3-540-69969-9 - H. Flaschka,
*The Toda lattice. I. Existence of integrals*, Phys. Rev. B (3)**9**(1974), 1924–1925. MR**408647** - Fritz Gesztesy, Helge Holden, Johanna Michor, and Gerald Teschl,
*The Ablowitz-Ladik hierarchy revisited*, Methods of spectral analysis in mathematical physics, Oper. Theory Adv. Appl., vol. 186, Birkhäuser Verlag, Basel, 2009, pp. 139–190. MR**2732077**, DOI 10.1007/978-3-7643-8755-6_{8} - Fritz Gesztesy, Helge Holden, Johanna Michor, and Gerald Teschl,
*Soliton equations and their algebro-geometric solutions. Vol. II*, Cambridge Studies in Advanced Mathematics, vol. 114, Cambridge University Press, Cambridge, 2008. $(1+1)$-dimensional discrete models. MR**2446594**, DOI 10.1017/CBO9780511543203 - Alexandru D. Ionescu and Carlos E. Kenig,
*$L^p$ Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations*, Acta Math.**193**(2004), no. 2, 193–239. MR**2134866**, DOI 10.1007/BF02392564 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*On the support of solutions to the generalized KdV equation*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**19**(2002), no. 2, 191–208 (English, with English and French summaries). MR**1902743**, DOI 10.1016/S0294-1449(01)00073-7 - Carlos E. Kenig, Gustavo Ponce, and Luis Vega,
*On the unique continuation of solutions to the generalized KdV equation*, Math. Res. Lett.**10**(2003), no. 5-6, 833–846. MR**2025059**, DOI 10.4310/MRL.2003.v10.n6.a10 - Helge Krüger and Gerald Teschl,
*Long-time asymptotics of the Toda lattice for decaying initial data revisited*, Rev. Math. Phys.**21**(2009), no. 1, 61–109. MR**2493113**, DOI 10.1142/S0129055X0900358X - Jonatan Lenells,
*Infinite propagation speed of the Camassa-Holm equation*, J. Math. Anal. Appl.**325**(2007), no. 2, 1468–1478. MR**2275032**, DOI 10.1016/j.jmaa.2006.02.045 - Johanna Michor and Gerald Teschl,
*On the equivalence of different Lax pairs for the Kac-van Moerbeke hierarchy*, Modern analysis and applications. The Mark Krein Centenary Conference. Vol. 2: Differential operators and mechanics, Oper. Theory Adv. Appl., vol. 191, Birkhäuser Verlag, Basel, 2009, pp. 445–454. MR**2569413**, DOI 10.1007/978-3-7643-9921-4_{2}7 - Gerald Teschl,
*Jacobi operators and completely integrable nonlinear lattices*, Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000. MR**1711536**, DOI 10.1090/surv/072 - Gerald Teschl,
*Almost everything you always wanted to know about the Toda equation*, Jahresber. Deutsch. Math.-Verein.**103**(2001), no. 4, 149–162. MR**1879178** - Gerald Teschl,
*On the spatial asymptotics of solutions of the Toda lattice*, Discrete Contin. Dyn. Syst.**27**(2010), no. 3, 1233–1239. MR**2629584**, DOI 10.3934/dcds.2010.27.1233 - Morikazu Toda,
*Theory of nonlinear lattices*, 2nd ed., Springer Series in Solid-State Sciences, vol. 20, Springer-Verlag, Berlin, 1989. MR**971987**, DOI 10.1007/978-3-642-83219-2 - Bing Yu Zhang,
*Unique continuation for the Korteweg-de Vries equation*, SIAM J. Math. Anal.**23**(1992), no. 1, 55–71. MR**1145162**, DOI 10.1137/0523004

## Additional Information

**Helge Krüger**- Affiliation: Department of Mathematics, Rice University, Houston, Texas 77005
- Address at time of publication: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- Email: helge@caltech.edu
**Gerald Teschl**- Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, 1090 Wien, Austria — and — International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
- Email: Gerald.Teschl@univie.ac.at
- Received by editor(s): April 1, 2009
- Received by editor(s) in revised form: December 30, 2010
- Published electronically: August 1, 2011
- Additional Notes: Research supported by the Austrian Science Fund (FWF) under grant No. Y330 and the National Science Foundation (NSF) under grant No. DMS–0800100.
- Communicated by: Walter Van Assche
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**140**(2012), 1321-1330 - MSC (2010): Primary 35L05, 37K60; Secondary 37K15, 37K10
- DOI: https://doi.org/10.1090/S0002-9939-2011-10980-8
- MathSciNet review: 2869115