$\psi _{\alpha }$-estimates for marginals of log-concave probability measures
HTML articles powered by AMS MathViewer
- by A. Giannopoulos, G. Paouris and P. Valettas
- Proc. Amer. Math. Soc. 140 (2012), 1297-1308
- DOI: https://doi.org/10.1090/S0002-9939-2011-10984-5
- Published electronically: August 3, 2011
- PDF | Request permission
Abstract:
We show that a random marginal $\pi _F(\mu )$ of an isotropic log-concave probability measure $\mu$ on $\mathbb R^n$ exhibits better $\psi _{\alpha }$-behavior. For a natural variant $\psi _{\alpha }^{\prime }$ of the standard $\psi _{\alpha }$-norm we show the following:
-
[(i)] If $k\leq \sqrt {n}$, then for a random $F\in G_{n,k}$ we have that $\pi _F(\mu )$ is a $\psi _2^{\prime }$-measure. We complement this result by showing that a random $\pi _F(\mu )$ is, at the same time, super-Gaussian.
-
[(ii)] If $k=n^{\delta }$, $\frac {1}{2}<\delta <1$, then for a random $F\in G_{n,k}$ we have that $\pi _F(\mu )$ is a $\psi _{\alpha (\delta )}^{\prime }$-measure, where $\alpha (\delta )=\frac {2\delta }{3\delta -1}$.
References
- Keith Ball, Logarithmically concave functions and sections of convex sets in $\textbf {R}^n$, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, DOI 10.4064/sm-88-1-69-84
- C. Borell, Convex set functions in $d$-space, Period. Math. Hungar. 6 (1975), no. 2, 111–136. MR 404559, DOI 10.1007/BF02018814
- Nikos Dafnis and Grigoris Paouris, Small ball probability estimates, $\psi _2$-behavior and the hyperplane conjecture, J. Funct. Anal. 258 (2010), no. 6, 1933–1964. MR 2578460, DOI 10.1016/j.jfa.2009.06.038
- B. Fleury, Concentration in a thin Euclidean shell for log-concave measures, J. Funct. Anal. 259 (2010), no. 4, 832–841. MR 2652173, DOI 10.1016/j.jfa.2010.04.019
- B. Fleury, O. Guédon, and G. Paouris, A stability result for mean width of $L_p$-centroid bodies, Adv. Math. 214 (2007), no. 2, 865–877. MR 2349721, DOI 10.1016/j.aim.2007.03.008
- A. Giannopoulos, Notes on isotropic convex bodies, Warsaw University Notes (2003).
- B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007), no. 1, 91–131. MR 2285748, DOI 10.1007/s00222-006-0028-8
- B. Klartag, Power-law estimates for the central limit theorem for convex sets, J. Funct. Anal. 245 (2007), no. 1, 284–310. MR 2311626, DOI 10.1016/j.jfa.2006.12.005
- Bo’az Klartag, On nearly radial marginals of high-dimensional probability measures, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 723–754. MR 2639317, DOI 10.4171/JEMS/213
- A. E. Litvak, V. D. Milman, and G. Schechtman, Averages of norms and quasi-norms, Math. Ann. 312 (1998), no. 1, 95–124. MR 1645952, DOI 10.1007/s002080050213
- Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1–16. MR 1601426
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- V. D. Milman, A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 28–37 (Russian). MR 0293374
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- V. D. Milman and G. Schechtman, Global versus local asymptotic theories of finite-dimensional normed spaces, Duke Math. J. 90 (1997), no. 1, 73–93. MR 1478544, DOI 10.1215/S0012-7094-97-09003-7
- G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021–1049. MR 2276533, DOI 10.1007/s00039-006-0584-5
- G. Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. (to appear).
- G. Paouris, On the existence of supergaussian directions on convex bodies, preprint.
- Gilles Pisier, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge University Press, Cambridge, 1989. MR 1036275, DOI 10.1017/CBO9780511662454
- Peter Pivovarov, On the volume of caps and bounding the mean-width of an isotropic convex body, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 2, 317–331. MR 2670218, DOI 10.1017/S0305004110000216
Bibliographic Information
- A. Giannopoulos
- Affiliation: Department of Mathematics, University of Athens, Panepistimioupolis 157 84, Athens, Greece
- Email: apgiannop@math.uoa.gr
- G. Paouris
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 671202
- Email: grigoris_paouris@yahoo.co.uk
- P. Valettas
- Affiliation: Department of Mathematics, University of Athens, Panepistimioupolis 157 84, Athens, Greece
- MR Author ID: 957443
- Email: petvalet@math.uoa.gr
- Received by editor(s): July 27, 2010
- Received by editor(s) in revised form: December 24, 2010
- Published electronically: August 3, 2011
- Additional Notes: The second author was partially supported by an NSF grant
- Communicated by: Thomas Schlumprecht
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1297-1308
- MSC (2010): Primary 46B07; Secondary 52A20
- DOI: https://doi.org/10.1090/S0002-9939-2011-10984-5
- MathSciNet review: 2869113