GENERALIZATION OF A THEOREM
OF CLUNIE AND HAYMAN

MATTHEW BARRETT AND ALEXANDRE EREMENKO

(Communicated by Mario Bonk)

Abstract. Clunie and Hayman proved that if the spherical derivative ∥f′∥
of an entire function satisfies ∥f′∥(z) = O(|z|^σ), then T(r, f) = O(r^{σ+1}). We generalize this to holomorphic curves in projective space of dimension n omitting n hyperplanes in general position.

Introduction

We consider holomorphic curves f : C → P^n; for the general background on the subject we refer to [7]. The Fubini–Study derivative ∥f′∥ measures the length distortion from the Euclidean metric in C to the Fubini–Study metric in P^n. The explicit expression is

∥f′∥^2 = ∥f∥^{-4} \sum_{i<j} |f'_i f_j - f_i f'_j|^2,

where (f_0, . . . , f_n) is a homogeneous representation of f (that is, the f_j are entire functions which never simultaneously vanish), and

∥f∥^2 = \sum_{j=0}^n |f_j|^2.

We recall that the Nevanlinna–Cartan characteristic is defined by

T(r, f) = \int_0^r \frac{dt}{t} \left(\frac{1}{\pi} \int_{|z|\leq t} ∥f′∥^2(z)dm(z) \right),

where dm is the area element in C. So the condition

(1) lim sup_{z→∞} |z|^{-σ} ∥f′(z)∥ ≤ K < ∞

implies

(2) lim sup_{r→∞} \frac{T(r, f)}{r^{σ+2}} < ∞.
Clunie and Hayman [4] found that for curves $C \to P^1$ omitting one point in P^1, a stronger conclusion follows from (1), namely

$$\limsup_{r \to \infty} \frac{T(r,f)}{r^{\sigma+1}} \leq KC(\sigma).$$

In the most important case of $\sigma = 0$, a different proof of this fact for $n = 1$ is due to Pommerenke [8]. Pommerenke’s method gives the exact constant $C(0)$. In this paper we prove that this phenomenon persists in all dimensions.

Theorem. For holomorphic curves $f : C \to P^n$ omitting n hyperplanes in general position, condition (1) implies (3) with an explicit constant $C(n,\sigma)$.

In [6], the case $\sigma = 0$ was considered. There it was proved that holomorphic curves in P^n with bounded spherical derivative and omitting n hyperplanes in general position must satisfy $T(r,f) = O(r)$. With a stronger assumption that f omits $n+1$ hyperplanes this was earlier established by Berteloot and Duval [2] and by Tsukamoto [9]. The proof in [6] has two drawbacks: it does not extend to arbitrary $\sigma \geq 0$, and it is non-constructive; unlike Clunie–Hayman and Pommerenke’s proofs mentioned above, it does not give an explicit constant in (3).

It is shown in [6] that the condition that n hyperplanes are omitted is exact: there are curves in any dimension n satisfying (1), $T(r,f) \sim cr^{2\sigma+2}$ and omitting $n-1$ hyperplanes.

Preliminaries

Without loss of generality we assume that the omitted hyperplanes are given in the homogeneous coordinates by the equations $\{w_j = 0\}, 1 \leq j \leq n$. We fix a homogeneous representation (f_0, \ldots, f_n) of our curve, where f_j are entire functions and $f_n = 1$. Then

$$u = \log \sqrt{|f_0|^2 + \ldots + |f_n|^2}$$

is a positive subharmonic function, and Jensen’s formula gives

$$T(r,f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(re^{i\theta}) d\theta - u(0) = \int_0^r \frac{n(t)}{t} dt,$$

where $n(t) = \mu(\{z : |z| \leq t\})$ and $\mu = \mu_u$ is the Riesz measure of u, that is, the measure with the density

$$\frac{1}{2\pi} \Delta u = \frac{1}{\pi} \|f'\|^2.$$

This measure μ is also called Cartan’s measure of f. Positivity of u and (2) imply that all f_j are of order at most $2\sigma + 2$, normal type. As $f_j(z) \neq 0, 1 \leq j \leq n$, we conclude that

$$f_j = e^{P_j}, \quad 1 \leq j \leq n,$$

where

$$P_j$$

are polynomials of degree at most $2\sigma + 2$.

We need two lemmas from potential theory.

Lemma 1 [6]. Let v be a non-negative harmonic function in the closure of the disc $B(a,R)$, and assume that $v(z_1) = 0$ for some point $z_1 \in \partial B(a,R)$. Then

$$v(a) \leq 2R|\nabla v(z_1)|.$$
We include a proof, suggested by the referee, which is simpler than that given in [6]. Without loss of generality, assume that $a = 0, R = 1, z_1 = 1$. Then Harnack’s inequality gives

$$v(0) \frac{1 + r}{1 - r} \leq v(r) - v(1) \frac{1}{1 - r}. $$

Passing to the limit as $r \to 1$, we obtain the result.

Lemma 2. Let v be a non-negative superharmonic function in the closure of the disc $B(a, R)$ and suppose that $v(z_1) = 0$ for some $z_1 \in \partial B(a, R)$. Then

$$|\mu_v(B(a, R/2))| \leq 3R \left| \frac{\partial v}{\partial n}(z_1) \right|. $$

By $|\partial v/\partial n|$ we mean here $\liminf |v(rz_1)|/(R(1 - r))$ as $r \to 1^-$.

Proof. The function $v(a + Rz)$ satisfies the conditions of the lemma with $R = 1$. So it is enough to prove the lemma with $a = 0$ and $R = 1$. Let

$$w(z) = \int_{|\zeta| \leq 1/2} G(z, \zeta) d\mu_v(\zeta) $$

be the Green potential of the restriction of μ_v onto the disc $|\zeta| \leq 1/2$, that is,

$$G(z, \zeta) = \log \left| \frac{1 - \zeta z}{z - \zeta} \right|. $$

Then $w \leq v$ and $w(z_1) = v(z_1) = 0$, which implies that

$$\left| \frac{\partial v}{\partial n}(z_1) \right| \geq \left| \frac{\partial w}{\partial |z|}(z_1) \right|. $$

Minimizing $|\partial G/|z||$ over $|z| = 1$ and $|\zeta| = 1/2$, we obtain $1/3$, which proves the lemma.

Proof of the theorem

We may assume without loss of generality that f_0 has infinitely many zeros. Indeed, we can compose f with an automorphism of \mathbb{P}^n; for example replace f_0 by $f_0 + cf_1$, $c \in \mathbb{C}$, and leave all other f_j unchanged. This transformation changes neither the n omitted hyperplanes nor the rate of growth of $T(r, f)$ and multiplies the spherical derivative by a bounded factor.

Let $u_j = \log |f_j|$ and

$$u^* = \max_{1 \leq j \leq n} u_j. $$

Here and in what follows max denotes the pointwise maximum of subharmonic functions.

Proposition 1. Suppose that at some point z_1 we have

$$u_m(z_1) = u_k(z_1) \geq u_j(z_1) $$

for some $m \neq k$ and all j where $m, k, j \in \{0, \ldots, n\}$. Then

$$\|f'(z_1)\| \geq (n + 1)^{-1} |\nabla u_m(z_1) - \nabla u_k(z_1)|. $$
Suppose that in the disc for all $|z| > r$.

Proof. If $u_0(z) \leq u^*(z)$ for all sufficiently large $|z|$, then there is nothing to prove. Suppose that $u_0(a) > u^*(a)$, and consider the largest disc $B(a, R)$ centered at a where the inequality $u_0(z) > u^*(z)$ persists. If z_0 is the zero of the smallest modulus of f_0, then $R \leq |a| + |z_0| < (1 + \epsilon)|a|$ when $|a|$ is large enough.

There is a point $z_1 \in \partial B(a, R)$ such that $u_0(z_1) = u^*(z_1)$. This means that there is some $k \in \{1, \ldots, n\}$ such that $u_0(z_1) = u_k(z_1) \geq u_m(z_1)$ for all $m \in \{1, \ldots, n\}$. Applying Proposition 1 we obtain

$$\|\nabla u_k(z_1) - \nabla u_0(z_1)\| \leq (n + 1)\|f'(z_1)\|.$$

Now $u_0(z) > u^*(z)$ for $z \in B(a, R)$, so we can apply Lemma 1 to $v = u_0 - u_k$ in the disc $B(a, R)$. This gives

$$u_0(a) - u_k(a) \leq 2R\|\nabla u_k(z_1) - \nabla u_0(z_1)\| \leq 2R(n + 1)\|f'(z_1)\|.$$

Now $R < (1 + \epsilon)|a|$ and $|z_1| \leq (2 + \epsilon)|a|$, so

$$u_0(a) \leq u^*(a) + K(2 + \epsilon)^{\sigma + 1}(n + 1)|a|^\sigma + 1,$$

and the result follows because $u = \max\{u_0, u^*\} + O(1)$.

Next we study the Riesz measure of the subharmonic function

$$u^* = \max\{u_1, \ldots, u_n\}.$$

We begin with the maximum of two harmonic functions. Let u_1 and u_2 be two harmonic functions in \mathbb{C} of the form $u_j = \text{Re} P_j$ where $P_j \neq 0$ are polynomials. Suppose that $u_1 \neq u_2$. Then the set $E = \{z \in \mathbb{C} : u_1(z) = u_2(z)\}$ is a proper real-algebraic subset of \mathbb{C} without isolated points. Apart from a finite set of ramification points, E consists of smooth curves. For every smooth point $z \in E$, we denote by $J(z)$ the jump of the normal (to E) derivative of the function $w = \max\{u_1, u_2\}$ at the point z. This jump is always positive and the Riesz measure μ_w is given by the formula

$$d\mu_w = \frac{J(z)}{2\pi} |dz|,$$

which means that μ_w is supported by E and has a density $J(z)/2\pi$ with respect to the length element $|dz|$ on E.

Now let $E_{i,j} = \{z : u_i(z) = u_j(z) \geq u_k(z), 1 \leq k \leq n\}$, and let $E = \bigcup E_{i,j}$ where the union is taken over all pairs $1 \leq i, j \leq n$ for which $u_i \neq u_j$. Then E is a proper real semi-algebraic subset of \mathbb{C} and ∞ is not an isolated point of E. For the elementary properties of semi-algebraic sets that we use here, see, for example,
There exists \(r_0 > 0 \) such that \(\Gamma = E \cap \{ r_0 < |z| < \infty \} \) is a union of finitely many disjoint smooth simple curves,

\[
\Gamma = \bigcup_{k=1}^{m} \Gamma_k.
\]

This union coincides with the support of \(\mu_{u^*} \) in \(\{ z : r_0 < |z| < \infty \} \).

Consider a point \(z_0 \in \Gamma \). Then \(z_0 \in \Gamma_k \) for some \(k \). As \(\Gamma_k \) is a smooth curve, there is a neighborhood \(D \) of \(z_0 \) which does not contain other curves \(\Gamma_j, j \neq k \), and which is divided by \(\Gamma_k \) into two parts, \(D_1 \) and \(D_2 \). Then there exist \(i \) and \(j \) such that \(u^*(z) = u_i(z), z \in D_1 \) and \(u^*(z) = u_j(z), z \in D_2 \), and \(u^*(z) = \max\{u_i(z), u_j(z)\} \), \(z \in D \). So the restriction of the Riesz measure \(\mu_{u^*} \) on \(D \) is supported by \(\Gamma_k \cap D \) and has density \(J(z)/(2\pi) \) where

\[
|J(z)| = |\partial u_i/\partial n - \partial u_j/\partial n|(z) = |\nabla (u_i - u_j)|(z)
\]

and \(\partial/\partial n \) is the derivation in the direction of a normal to \(\Gamma_k \). Taking into account that \(u_j = \text{Re} P_j \) where \(P_j \) are polynomials, we conclude that there exist positive numbers \(c_k \) and \(b_k \) such that

\[
J(z)/(2\pi) = (c_k + o(1))|z|^{b_k}, \quad z \to \infty, \quad z \in \Gamma_k.
\]

Let \(b = \max_k b_k \), and among those curves \(\Gamma_k \) for which \(b_k = b \) choose one with maximal \(c_k \) (which we denote by \(c_0 \)). We denote this chosen curve by \(\Gamma_0 \) and fix it for the rest of the proof.

Proposition 3. We have

\[
b \leq \sigma \quad \text{and} \quad c_0 \leq 3 \cdot 4^\sigma K(n+1).
\]

Proof. We consider two cases.

Case 1. There is a sequence \(z_n \to \infty, \ z_n \in \Gamma_0 \), such that \(u_0(z_n) \leq u^*(z_n) \). Then (1) and Proposition 1 imply that

\[
J(z_n) \leq (n+1)K|z_n|^{\sigma},
\]

and comparison with (8) shows that \(b \leq \sigma \) and \(c_0 \leq K(n+1)/(2\pi) \).

Case 2. \(u_0(z) > u^*(z) \) for all sufficiently large \(z \in \Gamma_0 \). Let \(a \) be a point on \(\Gamma_0 \), \(|a| > 3r_0 \), and \(u_0(a) > u^*(a) \). Let \(B(a, R) \) be the largest open disc centered at \(a \) in which the inequality \(u_0(z) > u^*(z) \) holds. Then

\[
R \leq |a| + O(1), \quad a \to \infty,
\]

because we assume that \(f_0 \) has zeros, so \(u_0(z_0) = -\infty \) for some \(z_0 \).

In \(B(a, R) \) we consider the positive superharmonic function \(v = u_0 - u^* \). Let us check that it satisfies the conditions of Lemma 2. The existence of a point \(z_1 \in \partial B(a, R) \) with \(v(z_1) = 0 \) follows from the definition of \(B(a, R) \). The Riesz measure of \(\mu_v \) is estimated using (7), (8):

\[
|\mu_v(B(a, R/2))| \geq |\mu_v(\Gamma_0 \cap B(a, R/2))| \geq c_0 R(|a| - R/2)^b.
\]

Now Lemma 2 applied to \(v \) in \(B(a, R) \) implies that

\[
|\nabla v(z_1)| \geq (c_0/3)(|a| - R/2)^b.
\]

On the other hand (1) and Proposition 1 imply that

\[
|\nabla v(z_1)| \leq K(n+1)(|a| + R)^\sigma.
\]
Combining these two inequalities and taking (11) into account, we obtain \(b \leq \sigma \) and \(c_0 \leq 3 \cdot 4^\sigma K(n+1) \), as required.

We denote
\[
T^*(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u^*(re^{i\theta}) d\theta - u^*(0),
\]
This is the characteristic of the “reduced curve” \((f_1, \ldots, f_n)\).

Proposition 4.
\[
T^*(r) \leq 6 \cdot 4^\sigma K \frac{n(n+1)^2}{\sigma + 1} r^{\sigma + 1}.
\]

Proof. By Jensen’s formula,
\[
T^*(r) = \int_0^r \nu(t) \frac{dt}{t},
\]
where \(\nu(t) = \mu_u^* (\{ z : |z| \leq t \}) \). The number of curves \(\Gamma_k \) supporting the Riesz measure of \(u^* \) is easily seen to be at most \(2n(n-1)(\sigma + 1) \). The density of the Riesz measure \(\mu_u^* \) on each curve \(\Gamma_k \) is given by (10), where \(c_k \leq c_0 \) and \(b_k \leq b \) and the parameters \(c_0 \) and \(b \) are estimated in Proposition 3. Combining all these data, we obtain the result.

It remains to combine Propositions 2 and 4 to obtain the final result.

ACKNOWLEDGMENT

The authors thank the referee for many valuable remarks and suggestions.

References

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address: eremenko@math.purdue.edu