Modular categories, integrality and Egyptian fractions
HTML articles powered by AMS MathViewer
- by Paul Bruillard and Eric C. Rowell
- Proc. Amer. Math. Soc. 140 (2012), 1141-1150
- DOI: https://doi.org/10.1090/S0002-9939-2011-11476-X
- Published electronically: December 8, 2011
- PDF | Request permission
Abstract:
It is a well-known result of Etingof, Nikshych and Ostrik that there are finitely many inequivalent integral modular categories of any fixed rank $n$. This follows from a double-exponential bound on the maximal denominator in an Egyptian fraction representation of $1$. A naรฏve computer search approach to the classification of rank $n$ integral modular categories using this bound quickly overwhelms the computerโs memory (for $n\geq 7$). We use a modified strategy: find general conditions on modular categories that imply integrality and study the classification problem in these limited settings. The first such condition is that the order of the twist matrix is $2,3,4$ or $6$, and we obtain a fairly complete description of these classes of modular categories. The second condition is that the unit object is the only simple non-self-dual object, which is equivalent to odd-dimensionality. In this case we obtain a (linear) improvement on the bounds and employ number-theoretic techniques to obtain a classification for rank at most $11$ for odd-dimensional modular categories.References
- Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619, DOI 10.1090/ulect/021
- Michael Cuntz, Integral modular data and congruences, J. Algebraic Combin. 29 (2009), no.ย 3, 357โ387. MR 2496312, DOI 10.1007/s10801-008-0139-y
- D.ย R. Curtiss, On $\text {K}$elloggโs diophantine problem, Amer. Math. Monthly 29 (1922), 380โ387.
- V. Drinfeld, S. Gelaki, D. Nikshych, and V. Ostrik, Group-theoretical properties of nilpotent modular categories (2010). arXiv:0704.0195
- Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), no.ย 1, 1โ119. MR 2609644, DOI 10.1007/s00029-010-0017-z
- Pavel Etingof and Shlomo Gelaki, Some properties of finite-dimensional semisimple Hopf algebras, Math. Res. Lett. 5 (1998), no.ย 1-2, 191โ197. MR 1617921, DOI 10.4310/MRL.1998.v5.n2.a5
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no.ย 2, 581โ642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Pavel Etingof, Dmitri Nikshych, and Victor Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 (2011), no.ย 1, 176โ205. MR 2735754, DOI 10.1016/j.aim.2010.06.009
- Terry Gannon, Modular data: the algebraic combinatorics of conformal field theory, J. Algebraic Combin. 22 (2005), no.ย 2, 211โ250. MR 2164398, DOI 10.1007/s10801-005-2514-2
- Shlomo Gelaki, Deepak Naidu, and Dmitri Nikshych, Centers of graded fusion categories, Algebra Number Theory 3 (2009), no.ย 8, 959โ990. MR 2587410, DOI 10.2140/ant.2009.3.959
- Shlomo Gelaki and Dmitri Nikshych, Nilpotent fusion categories, Adv. Math. 217 (2008), no.ย 3, 1053โ1071. MR 2383894, DOI 10.1016/j.aim.2007.08.001
- Richard K. Guy, Unsolved problems in number theory, 3rd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. MR 2076335, DOI 10.1007/978-0-387-26677-0
- Seung-moon Hong and Eric Rowell, On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010), no.ย 5, 1000โ1015. MR 2659210, DOI 10.1016/j.jalgebra.2009.11.044
- E. Landau, รber die $\text {Klassenzahl}$ der binรคren quadratischen $\text {Formen}$ von negativer $\text {Discriminante}$, Math. Ann. 50 (1903), 671โ676.
- D. Naidu and E.ย C. Rowell, A finiteness property for braided fusion categories, Algebr. Represent. Theory 14 (2011), no.ย 5, 837โ855.
- Siu-Hung Ng, Non-commutative, non-cocommutative semisimple Hopf algebras arise from finite abelian groups, Groups, rings, Lie and Hopf algebras (St. Johnโs, NF, 2001) Math. Appl., vol. 555, Kluwer Acad. Publ., Dordrecht, 2003, pp.ย 167โ177. MR 1995058
- Siu-Hung Ng and Peter Schauenburg, Frobenius-Schur indicators and exponents of spherical categories, Adv. Math. 211 (2007), no.ย 1, 34โ71. MR 2313527, DOI 10.1016/j.aim.2006.07.017
- Siu-Hung Ng and Peter Schauenburg, Congruence subgroups and generalized Frobenius-Schur indicators, Comm. Math. Phys. 300 (2010), no.ย 1, 1โ46. MR 2725181, DOI 10.1007/s00220-010-1096-6
- Online encyclopedia of integer sequences, 2010. http://www.research.att.com/njas/sequences/.
- Viktor Ostrik, Fusion categories of rank 2, Math. Res. Lett. 10 (2003), no.ย 2-3, 177โ183. MR 1981895, DOI 10.4310/MRL.2003.v10.n2.a5
- Victor Ostrik, Pre-modular categories of rank 3, Mosc. Math. J. 8 (2008), no.ย 1, 111โ118, 184 (English, with English and Russian summaries). MR 2422269, DOI 10.17323/1609-4514-2008-8-1-111-118
- Eric C. Rowell, From quantum groups to unitary modular tensor categories, Representations of algebraic groups, quantum groups, and Lie algebras, Contemp. Math., vol. 413, Amer. Math. Soc., Providence, RI, 2006, pp.ย 215โ230. MR 2263097, DOI 10.1090/conm/413/07848
- Eric Rowell, Richard Stong, and Zhenghan Wang, On classification of modular tensor categories, Comm. Math. Phys. 292 (2009), no.ย 2, 343โ389. MR 2544735, DOI 10.1007/s00220-009-0908-z
- T. Takenouchi, On an indeterminate equation, Proceedings of the Physico-Mathematical Society of Japan 3 (1921), 78โ92.
- Vladimir G. Turaev, Modular categories and $3$-manifold invariants, Internat. J. Modern Phys. B 6 (1992), no.ย 11-12, 1807โ1824. Topological and quantum group methods in field theory and condensed matter physics. MR 1186845, DOI 10.1142/S0217979292000876
Bibliographic Information
- Paul Bruillard
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 893733
- Email: paul.bruillard@math.tamu.edu
- Eric C. Rowell
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 752263
- Email: rowell@math.tamu.edu
- Received by editor(s): December 3, 2010
- Received by editor(s) in revised form: December 8, 2010
- Published electronically: December 8, 2011
- Communicated by: Harm Derksen
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1141-1150
- MSC (2010): Primary 18D10; Secondary 16T05, 11Y50
- DOI: https://doi.org/10.1090/S0002-9939-2011-11476-X
- MathSciNet review: 2869100