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SIMPLE RELATIONS IN THE CREMONA GROUP

JÉRÉMY BLANC

(Communicated by Ken Ono)

Abstract. We give a simple set of generators and relations for the Cre-
mona group of the plane. Namely, we show that the Cremona group is the
amalgamated product of the de Jonquières group with the group of auto-
morphisms of the plane, divided by one relation which is στ = τσ, where
τ = (x : y : z) �→ (y : x : z) and σ = (x : y : z) ��� (yz : xz : xy).

Let k be any fixed algebraically closed field. The Cremona group Bir(P2) is the
group of birational transformations of the projective plane P

2 = P
2
k.

The classical Noether-Castelnuovo Theorem says that Bir(P2) is generated by
the group Aut(P2) ∼= PGL(3, k), which we will denote by A, and by the standard
quadratic transformation

σ : (X : Y : Z) ��� (Y Z : XZ : XY ).

For a proof which is valid over any algebraically closed field (in particular, in
any characteristic), see for example [Sha, Chapter V, §5, Theorem 2, page 100].

A presentation of Bir(P2) was given in [Giz]. The generators are all the quadratic
transformations of the plane (among them, all elements of the form a1σa2, where
a1, a2 ∈ A), and the relations are all those of the form q1q2q3 = 1, where qi is
a quadratic map. The proof is quite long and uses many sophisticated tools of
algebraic geometry, such as cell complexes associated to rational surfaces.

Another presentation was given in [Isk2] (and announced in [Isk1]). The surface
taken here is P1×P

1, and the generators used are the group Aut(P1×P
1) and the de

Jonquières group J of birational maps of P1×P
1 which preserve the first projection

(see below). There is only one relation in the amalgamated product of these two
groups, which is (ρτ )3 = σ, where ρ = (x, y) �→ (x, x/y) and τ = (x, y) �→ (y, x) in
local coordinates. The proof is much shorter than the one of [Giz], and the number
of relations is also much smaller, but everything is now on Bir(P1 × P

1). There
is also some gap in the proof (observed by S. Lamy): the author implicitly uses
relations of the form (ρ′τ )3 = σ′ where ρ′ has base-points infinitely near, without
proving that they are generated by the first one (a fact not so hard to prove).

In this short paper, we give a new presentation of the Cremona group, which is
as simple as the one of [Isk2], but stays on P

2. The proof is also very short and
is in fact strongly inspired from the one of [Isk2]. We take care of infinitely near
points and translate the idea of Iskovskikh from P

1 × P
1 to P

2, where it becomes
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simpler. We use only classical tools of plane birational geometry (base-points and
blow-ups), as mathematicians of the nineteenth century did and as in [Isk2].

The de Jonquières group, that we will denote by J, is the subgroup of Bir(P2)
consisting of elements which preserve the pencil of lines passing through p1 = (1 :
0 : 0). This group can be viewed in local coordinates x = X/Z and y = Y/Z as

J =

⎧⎪⎪⎨
⎪⎪⎩
(
x, y

)
���

(
ax+ b

cx+ d
,
α(x)y + β(x)

γ(x)y + δ(x)

)
∣∣∣∣∣∣∣∣

(
a b
c d

)
∈ PGL(2, k),

(
α β
γ δ

)
∈ PGL(2, k(x))

⎫⎪⎪⎬
⎪⎪⎭

.

It is thus naturally isomorphic to PGL(2, k(x)) � PGL(2, k), where PGL(2, k) =
Aut(P1) acts on PGL(2, k(x)) via its action on k(x) = k(P1).

Since σ ∈ J, the group Bir(P2) is generated by A and J. The aim of this paper
is to prove the following result:

Theorem 1. The Cremona group Bir(P2) is the amalgamated product of A =
Aut(P2) and J along their intersection, divided by one relation, which is

στ = τσ,

where τ ∈ A is given by τ = (X : Y : Z) �→ (Y : X : Z).

Since στ = τσ is easy to verify, it suffices to prove that no other relation holds.
We prove this after proving the following simple lemma.

Lemma 1. If θ ∈ J is a quadratic map having p1 = (1 : 0 : 0) and q as base-points,
where q is a proper point of P

2\{p1} and ν ∈ A exchanges p1 and q, the map
θ′ = νθν−1 belongs to J and the relation

νθ−1 = (θ′)−1ν

is generated by the relation στ = τσ in the amalgamated product of A and J.

Proof of Lemma 1. The relations θ′ = νθν−1 and νθ−1 = (θ′)−1ν are clearly equiv-
alent. In particular, the result is invariant under conjugation of both θ and ν
by an element of A ∩ J. Observe that A ∩ J is the group of automorphisms of
P
2 which fix the point p1. Choosing an element in A ∩ J which sends q onto

p2 = (0 : 1 : 0), we can assume that q = p2. Then ν is equal to aτ , where
τ = (X : Y : Z) �→ (Y : X : Z) and a is an element of A ∩ J which fixes p2. We
can moreover assume that ν = τ , since this only replaces θ′ with its conjugation by
a ∈ A ∩ J.

We study two cases separately, depending on the number of proper base-points
of θ.

(a) Suppose that θ has exactly three proper base-points, p1, p2 and p3. Choose
a1 ∈ A ∩ J which fixes p2 (and p1) and sends p3 onto (0 : 0 : 1) (this is possible
since p3 is not collinear with p1 and p2). The two maps σa1 and θ are quadratic
maps with the same base-points: p1, p2, p3. This means that θ = a2σa1 for some
a2 ∈ A. Since θ, σ, a1 ∈ J, we see that a1, a2 ∈ A ∩ J. This yields the following
equality in the amalgamated product:

τθτ−1 = τa2σa1τ
−1 = (τa2τ

−1)(τστ−1)(τa1τ
−1).

Since τ, a1, a2 ∈ A and τaiτ
−1 ∈ A∩J for i = 1, 2, the above equality implies that

τθτ−1 is equal to an element of J modulo the relation στ = τσ and therefore yields
the result.
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(b) Suppose now that θ has only two proper base-points, p1, p2, and that its
third base-point is infinitely near to pi for some i ∈ {1, 2}. Choose a1 ∈ A ∩ J
which fixes p2 (and p1) and sends this infinitely near point to the tangent direction
z = 0 at the point pi. Once again this is possible since the three base-points of θ
are not “collinear”.

The maps θ and νia1 are quadratic maps with the same base-points, where ν1,
ν2 are the following quadratic involutions:

ν1 : (X : Y : Z) ��� (XY : Z2 : Y Z),
ν2 : (X : Y : Z) ��� (Z2 : XY : XZ).

This means that θ = a1νia2 for some a2 ∈ A. Once again, since θ, σ, a1 ∈ J, we
see that a1, a2 ∈ A ∩ J.

Denoting by ρ1, ρ2 ∈ A ∩ J the maps

ρ1 : (X : Y : Z) ��� (X : Z − Y : Z),
ρ2 : (X : Y : Z) ��� (Z −X : Y : Z),

a direct calculation shows that νi = ρiσρiσρi in J for i = 1, 2. As above, this yields
the following equality:

τθτ−1 = (τa1τ
−1)(τρiτ

−1)(τστ−1)(τρiτ
−1)(τστ−1)(τρiτ

−1)(τa2τ
−1).

Using στ = τσ and the fact that τρiτ
−1 = ρj in A, with j = 3− i, we obtain

τθτ−1 = (τa1τ
−1)(ρjσρjσρj)(τa2τ

−1) = (τa1τ
−1)νj(τa2τ

−1).

Therefore, τθτ−1 is again equal to an element of J modulo the relation στ =
τσ. �

Proof of Theorem 1. Taking an element f in the amalgamated product A �A∩J J
which corresponds to the identity map of Bir(P2), we have to prove that f is the
identity in the amalgamated product, modulo the relation στ = τσ.

We write f = jrar . . . j1a1, where ai ∈ A, ji ∈ J for i = 1, . . . , r. Note that many
such writings exist, and we allow the ai, ji to be trivial (equal to the identity).

We denote by Λ0 the linear system of lines of the plane, and for i = 1, . . . , n, we
denote by Λi the linear system jiai . . . j1a1(Λ0) and by di its degree. We define

D = max
{
di

∣∣∣ i = 1, . . . , r
}
, n = max

{
i
∣∣∣di = D

}
and k =

n∑
i=1

(
deg(ji)− 1

)
.

Recall that each ji is a birational transformation of the plane and that it has a degree
deg(ji), which is equal to the degree of the linear systems ji(Λ0) and (ji)

−1(Λ0). In
particular, deg(ji) = 1 ⇔ ji ∈ A. The number k counts the complexity of the word
jnan . . . j1a1, which corresponds to the birational map jiai . . . j1a1 of the highest
degree.

When D = 1, each ji belongs to A, and the word f is equal to an element of A
in the amalgamated product. Since A embeds into Bir(P2), this case is clear. We
can thus assume that D > 1 and prove the result by induction on the pairs (D, k),
ordered lexicographically.

If jn belongs to A, we replace an+1jnan by its product in A. This does not
change the pair (D, k) but decreases n by 1. If jn+1 belongs to A, we replace
an+2jn+1an+1 by its product in A and decrease r by 1 without changing the pair
(D, k). If an+1 ∈ J we replace jn+1an+1jn by its product in J, decreasing the pair
(D, k).
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We can thus assume that jn+1, jn ∈ J\A and that an+1 ∈ A\J. Remembering
that p1 = (1 : 0 : 0) is the base-point of the pencil associated to J, the fact that
an+1 /∈ J implies that an+1(p1) �= p1. Moreover, the fact that jn, jn+1 /∈ A implies
that both have degree > 1. We will denote these degrees by DL = deg(jn+1),
DR = deg(jn). Since jn+1 and jn preserve the pencil of lines passing through p1,
the point p1 is a base-point of jn+1 and jn of multiplicity DL − 1 and DR − 1
respectively. This means that the systems (jn+1)

±1(Λ0) and (jn)
±1(Λ0) consist of

curves of degree DL and DR having multiplicity DL − 1 and DR − 1 at p1. These
systems, being the image of the system Λ0 of lines of the plane, are homoloidal nets
(systems of rational curves with exactly one free intersection point). They have
thus respectively 2DL− 2 and 2DR − 2 base-points distinct from p1, which all have
multiplicity one.

We denote by ΩL and ΩR the systems

ΩL = (jn+1an+1)
−1(Λ0) and ΩR = jnan(Λ0)

which have degree DL and DR respectively, since an, an+1 ∈ A = Aut(P2) are only
changes of coordinates. Moreover, the points l0 = (an+1)

−1(p1) �= p1 and r0 = p1
are base-points of respectively ΩL and ΩR of multiplicity DL − 1 and DR − 1.

We use these systems to compute the degrees dn+1 and dn−1 of the systems
Λn+1 = jn+1an+1(Λn) and Λn−1 = (an)

−1(jn)
−1(Λn). For any i, di is equal to

the degree of Λi, which is the intersection of Λi with a general line, or the free
intersection of Λi with Λ0. In particular, dn+1 is equal to the free intersection of
Λn+1 = (jn+1an+1)(Λn) with Λ0 or to the free intersection of Λn with ΩL. Similarly,
dn−1 is equal to the free intersection of Λn+1 = (jn+1an+1)(Λn) with Λ0 or to the
free intersection of Λn with ΩL.

Writing l1, . . . , l2DL−2 and r1, . . . , r2DR−2 as the other base-points of ΩL and
ΩR (which have all multiplicity one, as we said above), we obtain the following
equalities:

dn+1 = DL · dn − (DL − 1) ·m(l0)−
∑2DL−2

i m(li) < dn,

dn−1 = DR · dn − (DR − 1) ·m(r0)−
∑2DR−2

i m(ri) ≤ dn,

where m(q) ≥ 0 is the multiplicity of a point q as a base-point of Λn. We order
the points l1, . . . , l2DL−2 so that m(li) ≥ m(li+1) for each i ≥ 1 and that if li is
infinitely near to lj , then i > j. We do the same for r1, . . . , r2DR−2. Rewriting the
above inequalities as

dn+1 = dn +
∑DL−1

i=1

(
dn −m(l0)−m(l2i−1)−m(l2i)

)
< dn,

dn−1 = dn +
∑DR−1

i=1

(
dn −m(r0)−m(r2i−1)−m(r2i)

)
≤ dn,

the order chosen implies that

(1)
m(l0) +m(l1) +m(l2) > dn,
m(r0) +m(r1) +m(r2) ≥ dn.

(a) Suppose that m(l0) ≥ m(l1) and m(r0) ≥ m(r1). We choose a point q in
the set {l1, l2, r1, r2}\{l0, r0} with the maximal multiplicity m(q), and so that q is
a proper point of the plane or infinitely near to l0 or r0 (which are distinct proper
points of the plane). We now prove that

(2) m(l0) +m(r0) +m(q) > dn.



SIMPLE RELATIONS IN THE CREMONA GROUP 1499

If l1 = r0, m(q) ≥ m(l2) and m(l0) +m(r0) +m(q) ≥ m(l0) +m(l1) +m(l2) > dn
by (1). If l1 �= r0, m(q) ≥ m(l1) ≥ m(l2) so m(l0) + m(q) > 2dn/3. Since
m(r0) ≥ m(r1) ≥ m(r2), we have m(r0) ≥ dn/3, and inequality (2) is clear.

Because of inequality (2), the points l0, r0 and q are not aligned, and there exists
a quadratic map θ ∈ J with base-points l0, r0, q (recall that r0 = p1 is the point
associated to the pencil of J). Moreover, the degree of θ(Λn) is 2dn−m(l0)−m(r0)−
m(q) < dn. Recall that an+1 ∈ A sends l0 onto r0 = p1. Choosing ν ∈ A∩J which
(fixes r0 = p1 and) sends an+1(r0) onto l0 and replacing respectively an+1 and
jn+1 by νan+1 and jn+1ν

−1, we can assume that an+1 exchanges l0 and r0 . Using
Lemma 1, we write θ′ = an+1θ(an+1)

−1 ∈ J and obtain the following equality
modulo the relation στ = τσ:

jn+1an+1jn = jn+1an+1θ
−1(θjn) = (jn+1(θ

′)−1)an+1(θjn),

and both (jn+1(θ
′)−1) and (θjn) belong to J, but an+1 ∈ A. Since θ(Λn) =

(θjn)(Λn−1) has degree < dn, this rewriting decreases the pair (D, k).
(b) Suppose now that we are in a “bad case” where m(l0) < m(l1) or m(r0) <

m(r1). We now prove that it is possible to change the writing of f in the amalga-
mated product (modulo the relation) without changing (D, k) but by reversing the
inequalities. We will thus be able to go back to the “good case” already studied in
(a) to conclude.

Assume first that m(r1) > m(r0). This implies that r1 is a proper point of the
plane and that there exists a quadratic map θ ∈ J with base-points p1 = r0, r1, r2.
Since these three points are base-points of (jn)

−1, the degree of θjn ∈ J is equal to
the degree of jn ∈ J minus 1.

Taking ν ∈ A which exchanges r0 and r1 and applying Lemma 1, we write
θ′ = νθν−1 ∈ J and obtain the following equality modulo the relation στ = τσ:

an+1jn = (an+1ν
−1)νθ−1(θjn) = (an+1ν

−1)(θ′)−1ν(θjn),

and both θ′ and (θjn) belong to J, but (an+1ν
−1) and ν belong to A. Since

(θ′)−1νθ(Λn) = ν(Λn), this rewriting replaces

(j1, . . . , jn, . . . , jr) with (j1, . . . , jn−1, θjn, (θ
′)−1, jn+1, . . . , jr),

(Λ0, . . . ,Λn, . . . ,Λr) with (Λ0, . . . ,Λn−1, θ(Λn), ν(Λn),Λn+1, . . . ,Λr).

The degree of θ(Λn) is equal to 2dn−m(r0)−m(r1)−m(r2) ≤ dn, and the degree of
ν(Λn) is dn. The new sequence thus has the same D, n is replaced with n+1, and k
stays the same since deg((θ′)−1)−1+deg(θjn)−1 = 2−1+deg(θjn)−1 = deg(jn)−1.
The system Λn being replaced with ν(Λn), where ν ∈ A exchanges r0 and r1, the
multiplicity of r0 as a base-point of ν(Λn) is now the biggest among the base-points
of θ′. In the new sequence, we have m(r0) > m(r1) instead of m(r1) > m(r0).

If m(l1) > m(l0), the same kind of replacement exchanges the points l0 and l1.
We can thus go back to case (a) after having made one or two replacements.

This achieves the proof. �
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