Exotic embeddings of open subsets of affine space
HTML articles powered by AMS MathViewer
- by Zbigniew Jelonek
- Proc. Amer. Math. Soc. 140 (2012), 1561-1568
- DOI: https://doi.org/10.1090/S0002-9939-2011-11037-2
- Published electronically: September 12, 2011
- PDF | Request permission
Abstract:
We show that every Zariski open affine proper subset $X\subset \mathbb A^n$ has infinitely many non-equivalent embeddings into $\mathbb A^{n+1}$. Moreover, we give some examples of non-equivalent embeddings of such $X$ in higher codimension.References
- Shreeram Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348. MR 82477, DOI 10.2307/2372519
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 379502
- Harm Derksen, Frank Kutzschebauch, and Jörg Winkelmann, Subvarieties of $\textbf {C}^n$ with non-extendable automorphisms, J. Reine Angew. Math. 508 (1999), 213–235. MR 1676877, DOI 10.1515/crll.1999.028
- Zbigniew Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), no. 1, 113–120. MR 884649, DOI 10.1007/BF01457281
- Zbigniew Jelonek, Identity sets for polynomial automorphisms, J. Pure Appl. Algebra 76 (1991), no. 3, 333–337. MR 1147306, DOI 10.1016/0022-4049(91)90141-N
- Zbigniew Jelonek, Irreducible identity sets for polynomial automorphisms, Math. Z. 212 (1993), no. 4, 601–617. MR 1214049, DOI 10.1007/BF02571679
- Zbigniew Jelonek, A note about the extension of polynomial embeddings, Bull. Polish Acad. Sci. Math. 43 (1995), no. 3, 239–244. MR 1415002
- Zbigniew Jelonek, A hypersurface which has the Abhyankar-Moh property, Math. Ann. 308 (1997), no. 1, 73–84. MR 1446200, DOI 10.1007/s002080050065
- Zbigniew Jelonek, Exotic embeddings of smooth affine varieties, J. Algebra 297 (2006), no. 2, 530–541. MR 2209273, DOI 10.1016/j.jalgebra.2005.11.011
- Zbigniew Jelonek, Manifolds with a unique embedding, Colloq. Math. 117 (2009), no. 2, 299–317. MR 2550135, DOI 10.4064/cm117-2-13
- Shulim Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of $k^n$ to automorphisms of $k^n$, Proc. Amer. Math. Soc. 113 (1991), no. 2, 325–334. MR 1076575, DOI 10.1090/S0002-9939-1991-1076575-3
- Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53–95. MR 1669174, DOI 10.1007/BF01236662
- T. Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, Berlin-New York, 1978. MR 0485842
- Michèle Raynaud, Modules projectifs universels, Invent. Math. 6 (1968), 1–26 (French). MR 236164, DOI 10.1007/BF01389829
- Vladimir Shpilrain and Jie-Tai Yu, Embeddings of hypersurfaces in affine spaces, J. Algebra 239 (2001), no. 1, 161–173. MR 1827879, DOI 10.1006/jabr.2000.8677
- V. Srinivas, On the embedding dimension of an affine variety, Math. Ann. 289 (1991), no. 1, 125–132. MR 1087241, DOI 10.1007/BF01446563
- Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace $\textbf {C}^{2}$, J. Math. Soc. Japan 26 (1974), 241–257 (French). MR 338423, DOI 10.2969/jmsj/02620241
- Richard G. Swan, Vector bundles, projective modules and the $K$-theory of spheres, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 432–522. MR 921488
- Burt Totaro, The automorphism group of an affine quadric, Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 1, 1–8. MR 2340971, DOI 10.1017/S0305004107000357
Bibliographic Information
- Zbigniew Jelonek
- Affiliation: Instytut Matematyczny, Polska Akademia Nauk, Śniadeckich, 00-956 Warszawa, Poland
- Email: najelone@cyf-kr.edu.pl
- Received by editor(s): January 16, 2011
- Received by editor(s) in revised form: January 26, 2011
- Published electronically: September 12, 2011
- Additional Notes: The author was partially supported by the Polish Ministry of Science, grant 2010-2013
- Communicated by: Lev Borisov
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1561-1568
- MSC (2010): Primary 14R10
- DOI: https://doi.org/10.1090/S0002-9939-2011-11037-2
- MathSciNet review: 2869140