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CR TRANSVERSALITY OF HOLOMORPHIC MAPPINGS
BETWEEN GENERIC SUBMANIFOLDS IN COMPLEX SPACES

PETER EBENFELT AND DUONG NGOC SON

(Communicated by Franc Forstneric)

ABSTRACT. We show that a holomorphic mapping sending one generic sub-
manifold into another of the same dimension is CR transversal to the target
submanifold provided that the source manifold is of finite type and the map is
of generic full rank. This result and its corollaries completely resolve two ques-
tions posed by Linda P. Rothschild and the first author in 2006. Another one
of our main results, in the special setting of hypersurfaces, was also explicitly
stated as a conjecture by B. Lamel and N. Mir in a paper from 2006.

1. INTRODUCTION

In this paper, we study CR transversality of holomorphic mappings sending a
generic submanifold in C" into another of the same dimension. Recall that if U
is an open subset of CV, H a holomorphic mapping U — CV, and M’ a generic
submanifold through a point p’ := H(p) for some p € U, then H is said to be CR
transversal to M’ at p if

(1) T;°M' +dH(T)y°CN) = T,,°C™,

where TO'M’ = CTM' N T%'CYN denotes the CR bundle on M’ and T M’ =
T91 M’ its complex conjugate. We remark that CR transversality of a holomorphic
mapping is a property that in general is strictly stronger than that of transversality
as a smooth mapping; i.e., CR transversality implies transversality, but the con-
verse does not hold in general. Transversality is an important and basic notion in
geometry and analysis. For instance, an example of a transversality result in anal-
ysis is the classical Hopf Lemma for subharmonic functions in a smoothly bounded
domain in R™ (see e.g. [GT83]). The reader is referred to e.g. the paper [ER0G] for
further elaboration on the significance of tranversality in geometry and analysis.
Also, the reader is referred to Section [ for definitions and further explanation of
the notions that appear in this introductory section.

The problem of CR transversality has been considered in various situations by
many authors; see e.g. [Forn76], [Forn7g|, [P77], [BB82], [BRI0], [BRI3], [CRI4],
[CR9S8|, [BHRO5], [HP96], [ERO6], [LMOG], [BEROT] and the references therein. In
this paper, we will consider the situation in which there is a generic submanifold
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M C U, of the same dimension as M’, such that p € M and H(M) C M’. In
[EROG], this same situation is considered and it is proved that the map H is CR
transversal to M’ at p € M provided that M’ is of finite type (in the sense of Kohn
and Bloom-Graham) at p’ := H(p) and the restriction of H to the Segre variety of
M at p is finite (as a mapping into the Segre variety of M’ at p’). The condition
on H is satisfied if, for instance, H itself is a finite mapping (CV,p) — (CV,p')
(i.e. the inverse image H ~!(p’) equals the singleton {p} as a germ of a variety at
p). By combining several results including the one mentioned above, it is noted in
[EROG] that if M and M’ are hypersurfaces (i.e. submanifolds of real codimension
one) and M is essentially finite at p, a stronger condition than finite type in the
hypersurface case, then H is CR transversal to M’ at p’ under the assumption that
Jac H # 0, where Jac H denotes the Jacobian determinant of H and # means “not
identically zero”; we remark that Jac H # 0 is strictly weaker than being a finite
map. It was conjectured in [ER06] that the condition of essential finiteness of M
at p could be weakened to finite type at p while maintaining the weak requirement
Jac H # 0 for the mapping. It was also conjectured that the condition Jac H # 0
would be sufficient to conclude CR tranversality in the case of higher codimensional
generic submanifolds M and M’ provided that M is assumed to be of finite type
and essentially finite at p. (For higher codimensional generic submanifolds, the
conditions of being of finite type and essentially finite are unrelated, and the authors
of [ER06] imposed both conditions on M in this conjecture to be on the safe side.)
In this paper, we prove both of these conjectures. Indeed, we even prove that
the condition of essential finiteness in the higher codimensional case is superfluous.
More precisely, we have the following theorem.

Theorem 1.1. Let M, M’ C C¥ be smooth generic submanifolds of the same
dimension through p and p’ respectively, and let H : (CN,p) — (CV,p) be a germ
of a holomorphic mapping such that H(M) C M'. Assume that M is of finite type
at p and Jac H £0. Then H is CR transversal to M’ at p'.

We note that if M’ is of finite type at p’ and the restriction of H to the Segre
variety of M at p is finite, then M is of finite type at p and Jac H # 0 (see
Proposition 2.3 in [ER06]). Thus, Theorem [[1] also implies the result in [ER0G]
described above (Theorem 1.4 in [ER0G]).

The condition that M is of finite type at p in Theorem [[I] is optimal, as the
following example shows that being of finite type at most points is not enough.

Example 1.2. Let H : (C2,0) — (C2,0) be the mapping H(z,w) = (z,w?), and
M C C? the hypersurface given by Imw = (Rew)p(z, z), where ¢ is a smooth
real function such that ¢(z,0) = ¢(0,z) = 0. Observe that M is parametrized by
(2,2,8) = (2,8 + is¢(z, 2z)). Furthermore
H(z5 + isp(2 2)) = (2, 82(1 — 92(2, 2)) + 2is%p(2, 2)).
Then it is easy to see that H sends M into the smooth real hypersurface M’ given
by
T — 2Rew)e(e', )
1- LPQ(ZC Z/)

Observe that M is of infinite type at 0 since it contains the complex hypersurface
{w = 0}; however, ¢ can be chosen such that M is of finite type at most points

except for proper subvarieties containing 0. The reader can check that the map H
satisfies Jac H # 0 but is not transversal to M’ at 0.
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It is also clear that some a priori condition on the mapping H is necessary for
the conclusion of Theorem [[LT] to hold, as is easily verified by simple examples. The
reader is referred to Example 2.4 in [BER07] (in which one may consider M C C?
as a finite type hypersurface in C? via a standard embedding) for an example of
a mapping H (with Jac H = 0) that is not CR transversal to M’ at 0. If the
source manifold M is holomorphically nondegenerate, then in fact the condition
Jac H # 0 is necessary for CR, transversality to hold (see Proposition below).
We state here the following result, which is a direct consequence of Theorem [[.T]and
Proposition B.6f we remark that this result was conjectured in the hypersurfaces
case (Conjecture 2.7) in [LMO6].

Theorem 1.3. Let M, M’ C CV be smooth generic submanifolds of the same
dimension through p and p' respectively, and let H : (CV,p) — (CN,p') be a germ of
a holomorphic mapping such that H(M) C M'. Assume that M is holomorphically
nondegenerate and of finite type at p. Then H is CR transversal to M’ at p if and
only if Jac H # 0.

If we impose stronger conditions on M, such as essential finiteness or finite
nondegeneracy in addition to finite type, then we also obtain stronger conclusions
as in [ER06]. Indeed, by combining our Theorem [[.T] with Theorems 6.1 and 6.6 in
[ERO6], we obtain the following result; the notions of essential finiteness and finite
nondegeneracy will not play a role in any of the proofs in this paper, and, hence,
the reader is referred to [ER06] or the book [BER99a] for their definitions.

Theorem 1.4. Let M, M’ C CN be smooth generic submanifolds through p and p’
respectively, and let H : (CV,p) — (CN,p') be a germ of a holomorphic mapping
such that H(M) C M’ and Jac H # 0. If M is of finite type and essentially finite
at p, then H is a finite map (CN,p) — (CN,p'). If, in addition, M is finitely
nondegenerate at p, then H is a local biholomorphism near p.

We mention that the notion of CR transversality can be defined also for CR
mappings f: M — M’ in terms of a formal power series expansion for f (see e.g.
[EROG]). The analog of Theorem [[1] holds for CR mappings whose differentials
have generic maximal rank.

In the next section, we will briefly recall some basic definitions and facts. In
Section 3, we will present the proof of Theorem[I.Il For further comments, examples
and related results regarding this problem, we refer the reader to e.g. the papers
[BR90] and [ERO6].

2. PRELIMINARIES

In this section, we will recall some basic definitions and facts about real sub-
manifolds in complex spaces. For more details and proofs of facts stated, we refer
the reader to the book [BER99a]. Recall that a real submanifold M of codimension
d in CV (= R?N) is said to be generic if, for every p € M, the submanifold M is
defined locally near p by a defining equation p(Z, Z) = 0, where p = (p1,...pq) is
a smooth R?-valued function satisfying the following condition:

Op1 N\ ...NOpg # 0.

In particular, a generic submanifold M of codimension d in CV is a CR manifold
of CR dimension n = N — d. If M is real-analytic and p € M, then there are
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normal (local) coordinates Z = (z,w), where z = (z1, ..., 2,) and w = (w1, ..., wq),
vanishing at p such that M is defined by the complex equation
(2) w = Q(Z’ 27 w),

where Q(z, x,7) is a C%valued holomorphic function defined in a neighborhood of
p = (0,0) satisfying

(3) Q(2,0,7) =Q(0,x,7) = T.

The fact that the d complex equations in (2)) define a submanifold of real codimen-
sion d is equivalent to the identity

(4) Q2 x, QX 2, w)) = w;

here and in what follows, we use the following notation: if u(x) is an analytic
function or formal power series in some set of variables x, then u(z) is the function
or power series given by () == u(Z).

A submanifold M is said to be of finite type (in the sense of Kohn and Bloom-
Graham) at p if the (complex) Lie algebra gp; generated by all smooth CR (or
(0,1)) vector fields on M and their conjugates satisfies gas(p) = CI,M. Our proof
of Theorem [Tl will rely partly on a characterization of finite type due to Baouendi,
Rothschild and the first author given in [BER96| (see also [BERO3]) in terms of
the generic rank of the iterated Segre mappings; precise details will be given in
Section 3. A generic, real-analytic submanifold M is said to be holomorphically
nondegenerate at p if there is no (nontrivial) germ at p of a holomorphic vector
field tangent to M near p. By a germ at p of a holomorphic vector field we shall
mean a vector field of the form

al )
L= Z@j(z)ﬁ,
=1 !

where the ¢; are germs at p of holomorphic functions.

We shall consider the variables Z,w in (2) as an independent set of complex
variables £ = (x,7), and thus the complexified equation w = Q(z, x,7) defines a
complex submanifold M of codimension d in CY x (Cév . We shall refer to M as
the complexification of M. If H(Z) is a holomorphic mapping (CV,0) — (C¥,0)
sending M into M’, then there is a d x d matrix a(Z, &) of holomorphic functions
in a neighborhood of the origin in C% x (Cév such that the following identity holds:

(5) p(H(Z),H(§)) = a(Z,€) - p(Z,§).

Equivalently, the complexified mapping H(Z, &) := (H(Z), H(€)) sends M into M’
(with the obvious notation). It is straightforward to verify that H is CR transversal
to M’ at 0 if and only if det a(0) # 0 (cf. [BEROT]).

It is convenient to relax the convergence properties of the map and defining
equations. A formal, generic submanifold M of codimension d through 0 in CV
is defined by a formal equation of the form (@), where Q(z,x,7) is a C%-valued
power series in (z,,7) € C" x C" x C? satisfying the normality condition (3] and
the reality condition (). A formal holomorphic mapping H: (CV,0) — (C¥,0)
(i.e. a CN-valued power series in Z = (z,w) with no constant term) is said to
send the formal submanifold M into a formal submanifold M’ if there exists a
d x d matrix a(Z, &) of formal power series such that (&) holds. If M and M’ are
smooth, generic submanifolds through p and p’ in CV and H is a holomorphic



CR TRANSVERSALITY OF HOLOMORPHIC MAPPINGS 1733

mapping (CV¥,p) — (CV,p') (or a smooth CR mapping defined on M) sending
M into M’ then one can associate to M and M’ formal manifolds, still denoted
by M and M’, through 0 and a formal holomorphic mapping, also denoted by
H: (CN,0) — (CV,0), sending M into M’; the reader is e.g. referred to [BER99b]
for this (fairly obvious) construction. It is also straightforward to verify that the
holomorphic mapping H sending the smooth manifold M into the smooth manifold
M’ is CR transversal to M’ at p if and only if the formal manifolds and mapping
satisfy (B with deta(0) # 0. Thus, to prove Theorem [Tl it suffices to consider
formal manifolds M and M’ through 0 in C¥, a formal holomorphic mapping
H: (CY,0) — (CN,0) sending M into M’, i.e. satisfying (&), and prove that the
matrix a(Z,€) in (Bl satisfies det a(0) # 0; the reader is also referred to [ER06] for
more details on this reduction to the formal case. In what follows, we shall consider
only formal mappings and formal generic submanifolds.

3. PROOF OF THE MAIN THEOREM AND COROLLARIES

In this section, M and M’ are generic formal submanifolds through 0, given in
normal coordinates by p(Z, Z) = 0 and p'(Z’, Z') = 0, where p(Z, &) = w—Q(z, X, T)
and p'(Z',&") =w' — Q'(¢', X', 7"), and H(Z) is a formal mapping sending M into
M'. For the proof of the main result, we shall need a sequence of lemmas. Let us
begin with the following lemma.

Lemma 3.1. Let M and M’ be generic formal submanifolds defined as above and
H : (CN,0) = (CN,0) a formal mapping sending M into M’, that is,

where a(Z,€) is a d X d matriz of formal power series in C[[Z,&]]. Then, there are
d x d matrices C(Z,€) and E(Z,&) of formal power series in C[[Z,£]] such that the
following holds:

(7) det Hz(Z) - Ia = a(Z, (x, Q(x, Z))) - C(Z,§),
(8) detf{i(&)'Id:a((QO(zvg))7§)'E(27§)7

where Iy denotes the d x d identity matriz.

Proof. By differentiating (@) with respect to Z we get

(9) p/Z,(H(Z),H(f)) ' HZ(Z) = aZ(Za E) : p(Z, f) + G(Z, 5) : pZ(Z’ 5)

Now we substitute ¢ = (x, Q(x, Z)) into (@) and note that p(Z, (x, Q(x, Z)))) = 0.
Hence

(10) Pz (H(Z), H(x, Q(x, 2))) - Hz(Z) = a(Z, (x, Q(x, Z))) - p2(Z, (x, Q(x, Z)))-

By Cramer’s rule, there is an N x N matrix of formal power series B(Z) such that
HzB = BH; = (det Hz)I. Thus, it follows from equation (0 that

a1 Pz (H(Z),H(x,Q(x, Z))) - det Hz(Z)
=a(Z,(x,Q(x. 2))) - pz(Z, (x,Q(x, 2))) - B(Z).
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Recall that p/(Z',¢&') = w' — Q(#',¢’), where Z' = (2/,w’). It then follows that
the last d columms of p’,, is the identity matrix I;. Thus, by considering the last d
columns of equation (), we find that there is a d x d matrix C = C(Z, ) whose
entries are power series such that

det HZ(Z) g = a’(Za (XvQ(Xa Z))) ’ C(Za g)

Thus, equation (7)) is proved.
Now, to prove (§)), we differentiate (@) with respect to £ and substitute Z =

(2.Q(=.€). Since p((= Q(,6)),€) = 0 we have
(12) p{g’/(H(Za Q(Z’g))v H(f)) ’ E[E(g) = a((za Q(Z’g))vf) : pé((za Q(Z’g))vf)

Note that H¢(€)- B(€) = det He(€)Iy, where B(Z) is the matrix introduced above.

Multiplying both sides of ([2) with B(¢), we obtain

(13) ) _ _
per(H(z,Q(2,€)), H(E)) - det He(§) = al((2, Q(2,)),€) - pe((2, Q(2,€)), €) - B(E).

Taking the last d columns of ([I3]), we obtain

(14)  det He(§) - pi (H (2, Q(2,€)), H(E)) = a((2,Q(2,€)),€) - D(Z,¢),

where D(Z,€) is the matrix formed by the last d columns of p¢((z,Q(z,€)),§) -
B(§). Now, it follows from (@) that p/,(0,0) = Q,(0,0,0) = I; and hence
ol (H(2,Q(2,€)), H(€))) is invertible over the ring C[[Z,¢]]. Consequently, it fol-
lows from (4] that there is a matrix E(Z, ) such that

det He (&) - 1o = a((2,Q(2,€)),€) - E(Z,€),
which is (8). The proof is complete. O
Lemma 3.2. Assume that det Hz(0) = 0, but det Hz(Z) # 0. Then there exist
units u(Z,€), v(Z,€) in C[[Z,£]] and formal power series b(Z) € C[[Z]], c¢(§) € C[[€]]
such that
(15) det a(Z, (x, Q(x. 2))) = u(Z,§) - b(2);
(16) det a((z,Q(2,€)),§) = v(Z,€) - ¢(§).
Furthermore, b(Z) is a divisor of (det Hz(Z))® in C[[Z]] and c(&) is a divisor of
(det He(€))¢ in the ring C[[€]).
Proof. Tt follows from () that

(17) (det Hz(Z))? = det a(Z, (x. Q(x, Z))) det C(Z, (x, Q(x, Z))).

We now factor both sides of (7)) into products of irreducible elements in the unique
factorization domain C[[Z,£]]. Since the left-hand side of (7)) is a nontrivial formal
power series in the ring C[[Z]] C C[[Z,€]], its factorization involves factors that are
power series in Z only. Thus, by the uniqueness of the factorization, we obtain

deta(Z, (x,Q(x, 2))) = u(Z,£) - b(Z),

where b(Z) € C[[Z]] is a divisor of (det Hz(Z))? and u(Z, &) is a unit in C[[Z, £]].
Similarly, it follows from (8] that

(det He(€))" = deta((z, Q(2,€)),€) - det E(Z,€).
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A similar argument to the one above shows that

det a((z,Q(2,€)), &) = v(Z,§) - ¢(§),
where v(Z,€) € C[[Z,€]] is a unit and c(£) € C[[¢]] is a divisor of (det He(€))?. The
proof is complete. O

Lemma 3.3. Let u,v,b,c be as in Lemma B2 Then, there is a unit s(Z,€) in
C[[Z,€&]] such that

(18) b(2,Q(2,€)) = 5(Z,€) - ¢(£).
Proof. We substitute Z = (z,Q(z,€)) into ([I3)), and use ) and (8] to obtain

U((Z, Q(Z,E))7§) . b(Z, Q(z,f)) = det a((Z, Q(Zaf))’ (Xa Q(X7 Z, Q(Z7§))))
=deta((z,Q(2,%)),&)
= ’U(Z, 5) : C(f)

Since u(Z,€) and v(Z, ) are units, we can take s(Z, &) = (u((z, Q(z,€)),€)) " w(Z,€)
to obtain ([I8). It is obvious that s(Z, &) is also a unit. The proof is complete. [

Let ¢ : (C™,0) — (CV,0) be a formal mapping. Thus, ¢ = (¢1(x), ¢2(2),. ..,
¢én(x)), where ¢;(x) are formal power series in « with no constant term. Recall
that the generic rank of ¢ is the rank of the Jacobi matrix (0¢;/0xy) considered
as a matrix with entries in the quotient field of C[[z]]. We will need the following
lemma, whose proof for the case k = 1 and m = N may be found, e.g., in [BER99a],
Proposition 5.3.5. The same proof works also in the general case, with some obvious
modifications.

Lemma 3.4. Let K : (CN,0) — (C*,0) and ¢ : (C™,0) — (CN,0) be formal
mappings. Assume that ¢ has generic rank N. If K o ¢ =0, then K = 0.

We shall now prove our main result.

Proof of Theorem[L.Il As explained in Section 2, we may assume that M and M’
are formal manifolds through 0 € CV, H: (CV,0) — (C¥,0) a formal mapping
satisfying (B]), and then to prove Theorem [[1] it suffices to prove that the ma-
trix a(Z,€) in (@) satisfies deta(0) # 0. Thus, we assume, in order to reach a
contradiction, that det a(0) = 0. We deduce from (I6]) that

v(0,0) - ¢(0) = det a(0) = 0.
Thus, ¢(0) = 0 since v(Z,€) is a unit. Setting £ = 0 in equation (I8) yields

(19) b(z,0) = b(z,Q(2,0)) = s((z,0),0) - ¢(0) = 0.
Thus, it follows from (&) that
(20) deta(z,0,x, Q(x, 2,0)) = u(z,0,x, Q(x, 2,0)) - b(z,0) = 0.

By taking determinants on both sides of equation (8)), substituting £ = (x, Q(x, 2, 0))
and using (@), we conclude that

(21) (det He(x, Q(x; 2,0)))"
= deta(z,0,x,Q(x,2,0)) - det E(Z, (x,Q(x, 2,0))) = 0.
In the hypersurfaces case, the proof is complete. Indeed, if M is of finite type at

0, then the map (2, x) = (x, Q(X; 2,0)) has rank n+1 (see e.g [BER96]) and thus,
by Lemma [3.4] equation (2I) implies that det H = 0. This is a contradiction.
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For the general case, we will need the iterated Segre mappings introduced in
[BERI6] (see also [BERO3], [ER06]). For a positive integer k, the kth Segre mapping
of M at 0 is the mapping v* : C** — CV defined by

(22) Chrst = (th . t7) = R (1) == (7, ub (1 tR)),
where u* : Ck* — C? is given inductively by
(23)  wr(th) =0, WPt . tR) = QR T wkL( LR, k> 2.

The crucial property of the Segre mappings needed here is the result (see [BER96],
[BER99a], [BER99b], [BERO3]) that M is of finite type at O if and only if the
maps v* have generic rank N for k large enough (k > d + 1 suffices). Thus, by
Lemma [3.4] the following lemma implies that det Hz = 0, which is a contradiction
and completes the proof of Theorem [l O

Lemma 3.5. For every j > 0, the following holds:
(24) det Hy o v®*1 = 0.

Proof. We may consider b(Z) and ¢(§) in Lemmas and B3] as power series in
(Z,&) by b(Z,£) = b(Z) and ¢(Z,€) = ¢(€). Since the complexification M of M is
parametrized by
(2:7) = (2,Q2, X, 7), X, 7),

it follows from (I8)) that b = ¢ on M, where we use the notation o = 8 to mean
a = vp for some unit v. Now, another crucial property of the Segre mappings
v* (see e.g. [BERO9D]) is that (vF*1,v%) € M and (v~ vF) € M for every k.
Consequently, equation (I8]) implies that

(25) bov*tl = cowk, covk=porkl,

We deduce that bov*+! = hov*~! for all k > 2. By induction, we obtain, for every
positive integer 7,
bov¥tt 2 poyl.

Hence, since bov! = 0 by ([[d), we conclude that bov?*1 = 0. Since, by Lemma[3.2]
b(Z) is a divisor of (det Hz(Z))?, it follows that

det Hy o 0¥+l = 0.
This completes the proof of Lemma O

We may now prove Theorem [[.4}

Proof of Theorem [ 4l Since Jac H # 0 and M is of finite type at p, it follows from
Proposition 2.3 in [ER06] that M’ is of finite type at p’. Also, by Theorem [T H is
CR transversal to M’ at p and thus, in particular, transversally regular to M’ (see
[EROG]). Consequently, by Theorem 6.1 in [ER06], if M is also essentially finite at
p, then H is a finite mapping and M’ is essentially finite at p’. If, in addition, M
is finitely nondegenerate at p, then Theorem 6.6 in [ER06] asserts that H is a local
biholomorphism near p. (I

Now, to prove Theorem [[.3] we shall need the following proposition. A different
proof of a slightly more general result in the hypersurface case may be found in
[LMO6] (see Theorem 2.8).
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Proposition 3.6. Let M, M' C CN be smooth generic submanifolds of the same
dimension through 0 and H : (CN,0) — (CN,0) a germ of a holomorphic mapping
such that H(M) C M'. Assume that M is holomorphically nondegenerate at 0. If
H is CR transversal to M' at 0, then Jac H # 0.

Proof. The idea of the proof is taken from [A0S|]. Assume, in order to reach a
contradiction, that Jac H = 0. Then, there is a nontrivial N-vector U(Z) with
components in the field of fractions of C[[Z]] such that

(26) Hz(2Z)-U(Z)=0.

By multiplying (26]) with a suitable power series if necessary, we may assume that
U(Z) has components in C[[Z]]. Thus, we can consider the following nontrivial
formal holomorphic vector field:

n

L= ZUj(Z)%.

=1 !
It follows from (28] that LH; =0 for all j = 1,..., N. Now, since H sends M into
M’ we have
(27) p'(H(Z),H(€)) = a(Z,§) - p(Z,§).
Applying L to the left-hand side of ([27)), we obtain

S sl (H(Z), ) LH(Z) =0.

Consequently, we must also have L(a(Z,€) - p(Z,€)) = 0. In other words,
(28) (La)-p+a-(Lp)=0.

Since H is CR transversal to M’ at 0, we have det a(0) # 0 and hence a(Z,¢) is
invertible in C[[Z, £]]. We deduce from (28) that

Lp = —(a)""(La)p.

It follows that L is tangent to M. This is a contradiction since M is holomorphically
nondegenerate. The proof is complete. O

Theorem [[L3] is now a direct consequence of Theorem [Tl and Proposition
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