On a class of magnetic Schrödinger operators with discrete spectrum
HTML articles powered by AMS MathViewer
- by N. Anghel
- Proc. Amer. Math. Soc. 140 (2012), 1613-1616
- DOI: https://doi.org/10.1090/S0002-9939-2011-11517-X
- Published electronically: December 23, 2011
- PDF | Request permission
Abstract:
We introduce a class of magnetic Schrödinger operators in $\mathbf {R}^n$ which exhibit pure point spectrum in a fashion that is actually easy to check. This class is an adequate generalization of the more familiar two-dimensional setting, and the proof we give for its spectral discreteness is novel, based on the use of Euclidean Dirac operators coupled to vector potentials.References
- J. Avron, I. Herbst, and B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J. 45 (1978), no. 4, 847–883. MR 518109
- Helga Baum, Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 41, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1981 (German). With English, French and Russian summaries. MR 701244
- Alain Dufresnoy, Un exemple de champ magnétique dans $\textbf {R}^{\nu }$, Duke Math. J. 50 (1983), no. 3, 729–734 (French). MR 714827
- B. Helffer and A. Mohamed, Caractérisation du spectre essentiel de l’opérateur de Schrödinger avec un champ magnétique, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 2, 95–112 (French, with English summary). MR 949012
- Akira Iwatsuka, Magnetic Schrödinger operators with compact resolvent, J. Math. Kyoto Univ. 26 (1986), no. 3, 357–374. MR 857223, DOI 10.1215/kjm/1250520872
- Vladimir Kondratiev and Mikhail Shubin, Discreteness of spectrum for the magnetic Schrödinger operators, Comm. Partial Differential Equations 27 (2002), no. 3-4, 477–525. MR 1900553, DOI 10.1081/PDE-120002864
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
Bibliographic Information
- N. Anghel
- Affiliation: Department of Mathematics, University of North Texas, Denton, Texas 76203
- MR Author ID: 26280
- Email: anghel@unt.edu
- Received by editor(s): January 5, 2011
- Published electronically: December 23, 2011
- Communicated by: Varghese Mathai
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 1613-1616
- MSC (2010): Primary 35J10; Secondary 35P05, 47F05, 81V10
- DOI: https://doi.org/10.1090/S0002-9939-2011-11517-X
- MathSciNet review: 2869145