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ON LYAPUNOV EXPONENTS

OF CONTINUOUS SCHRÖDINGER COCYCLES

OVER IRRATIONAL ROTATIONS

WEN HUANG AND YINGFEI YI

(Communicated by Bryna Kra)

Abstract. In this paper we consider continuous, SL(2,R)-valued, Schrödinger

cocycles over irrational rotations. We prove two generic results on the Lya-
punov exponents which improve the corresponding ones contained in a paper
by Bjerklöv, Damanik and Johnson.

1. Introduction

Let α be a fixed irrational number and A : T �→ SL(2,R) be a continuous map.
Then A generates a continuous, SL(2,R)-valued cocycle {A(n, θ)} over the irrational
rotations θ �→ θ + α on T = R/Z (or a continuous, quasi-periodic, SL(2,R)-valued
cocycle with frequency α). More precisely, define

A(n, θ) =

⎧⎪⎨
⎪⎩
A(θ + (n− 1)α) . . . A(θ), n > 0,

Id, n = 0,

A−1(θ − nα) . . . A−1(θ − α), n < 0.

It is clear that {A(n, θ)} satisfies the cocycle property:

A(n+m, θ) = A(n, θ +mα)A(m, θ), m, n ∈ Z, θ ∈ T.

The cocycle admits a well-defined (maximal) Lyapunov exponent given by

Λ(A) := lim
n→∞

1

n

∫
T

log ‖A(n, θ)‖dθ = inf
n≥1

1

n

∫
T

log ‖A(n, θ)‖dθ;

i.e., the limit exists and is independent of θ. When Λ(A) > 0, the corresponding
cocycle is said to be uniformly hyperbolic if

lim
n→+∞

1

n
log ‖A(n, θ)‖ = Λ(A)

uniformly in θ and to be non-uniformly hyperbolic if otherwise.
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In this paper, we pay particular attention to continuous, quasi-periodic, SL(2,R)-
valued, Schrödinger cocycles with fixed irrational frequency α, i.e., a family
{Af,E(n, θ) : E ∈ R, f ∈ C(T)} of quasi-periodic, SL(2,R)-valued cocycles with
the frequency α which is generated by the continuous, SL(2,R)-valued functions

Af,E(θ) =

(
E − f(θ) −1

1 0

)
.

Such cocycles are referred to as Schrödinger cocycles because they arise and play
important roles in the study of the spectral problem of the discrete quasi-periodic
Schrödinger operator,

[Hfψ](n) = (Δ+ f(θ + (n− 1)α))ψ(n) = Eψ(n),(1.1)

where Δψ(n) = ψ(n+ 1) + ψ(n− 1). For simplicity, we denote Λf (E) =: Λ(Af,E),
Af (n, ·) =: Af,0(n, ·), and Λf =: Λf (0).

Related to the spectral problem especially with respect to the non-existence
of an absolutely continuous spectrum, one often considers, for a fixed f , a two-
parameter family {Aλf,E(n, θ)} of Schrödinger cocycles, and studies the positivity
of the Lyapunov exponents Λλf (E) for λ sufficiently large. In particular, when α
satisfies appropriate Diophantine conditions, for a certain class of smooth f , it is
known that Λλf (E) is of scale of log λ as λ � 1 uniformly in E (see, e.g., [2, 6, 11, 12,
16]). However, in a recent work of Bjerklöv, Damanik, and Johnson [3] such uniform
bounds are shown to be extremely unstable within the class of continuous functions.
More precisely, it is shown in [3] that for every countable set {λm}∞m=1 ⊂ (0,+∞),
there exists a residual set of f ∈ C(T) for which infE∈R Λλmf (E) = 0 for each
m ∈ N.

In this paper, we will show that this result can be improved as follows.

Theorem 1. For a residual set of f ∈ C(T),

inf
E∈R

Λλf (E) = 0

for any λ > 0.

For general quasi-periodic, continuous, SL(2, R)-valued cocycles, it is shown in
[4] that there is a residual set R ⊂ C(T, SL(2,R)) such that for A ∈ R, either
A is uniformly hyperbolic or Λ(A) = 0 (see [9, 10] for similar results that hold
for a generic set of pairs (α, f); see also [1]). The same is also shown to hold for
Schrödinger cocycles with E = 0 ([3, 5]).

Our next result proves the same phenomenon for the parametrized Schrödinger
cocycles with E = 0.

Theorem 2. The set

{f ∈ C(T) : Aλf (n, ·) is uniformly hyperbolic or Λλf = 0 for any λ ∈ (0,∞)}

is residual.

The rest of this paper is devoted to the proof of Theorems 1 and 2. Our proofs
essentially follow the approaches of [3] with necessary modifications.
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2. Proofs of theorems

Throughout the rest of the paper, we let α be a fixed irrational number. For
a Schrödinger operator Hf of the form (1.1) with θ ∈ T and f ∈ L1(T), it is well
known that the spectrum σ(Hf ) is independent of θ ∈ T almost everywhere, and if
f ∈ C(T), then σ(Hf ) is completely independent of θ. Uniform and non-uniform
hyperbolicities of the corresponding (measurable) Schrödinger cocycles Af,E(n, ·)
can be defined similarly to the continuous case.

As in [3], the following result will play an important role in the proofs of the
theorems.

Theorem 2.1. Suppose f : T �→ R is of the form

f(θ) =

M∑
m=1

fmχ[βm−1,βm)(θ),(2.1)

where 0 = β0 < β1 < · · · < βM = 1 are rational numbers and f1, . . . , fM are real.
Then σ(Hf ) = {E : Λf (E) = 0}.

Proof. See [7, 8]. �

A crucial step in proving the above result is to show that for any f having the
form (2.1),

lim
n→∞

1

n
log ‖Af,E(n, θ)‖ = Λf (E)

for every E ∈ R uniformly in θ ∈ T ([7, 8, 14]). The result then follows from the
following.

Theorem 2.2. For any f ∈ L1(T),

σ(Hf ) = {E : Λf (E) = 0 or Af,E(n, ·) is non-uniformly hyperbolic}.

Proof. See [15, 13]. �

Lemma 2.3. For any non-empty compact subset K ⊆ (0,+∞), the set

MK,0 := {f ∈ C(T) : inf
E∈R

Λλf (E) = 0 for any λ ∈ K}

is residual in C(T).

Proof. Let K ⊆ (0,+∞) be a non-empty compact subset. We consider the family
of sets

MK,δ = {f ∈ C(T) : ∀λ ∈ K ∃Eλ ∈ R such that Λλf (Eλ) < δ}, δ > 0.

We will show that each MK,δ is open and dense, and hence MK,0 =
⋂

δ>0 MK,δ is
residual.

First we show that MK,δ is open, i.e., C(T) \MK,δ is closed. Let {fn} ⊂ C(T) \
MK,δ, f ∈ C(T) be such that ‖fn − f‖∞ → 0. Then for each n ∈ N there exists
a λn ∈ K with Λλnfn(E) ≥ δ for all E ∈ R. Since K is compact, there exists a
subsequence {n1 < n2 < · · · } ⊆ N such that limi→∞ λni

= λ0 for some λ0 ∈ K. It
follows from the upper-semicontinuity of Lyapunov exponents Λλf (E) in λ that

Λλ0f (E) ≥ lim sup
i→∞

Λλni
fni

(E) ≥ δ

for any E ∈ R. Hence f ∈ C(T) \MK,δ. This shows that C(T) \MK,δ is closed.
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Next we show that MK,δ is dense. Let ε > 0 and g ∈ C(T) be given. In the
ε
2 -neighborhood of g with respect to the L∞ topology, we choose a step function s
of the form (2.1); i.e., s has finitely many points of discontinuity, all of which are
rational, and the jumps of s are bounded by ε

2 . It then follows from Theorem 2.1
that for any λ ∈ K, Λλs vanishes on the spectrum σ(Hλs) ofHλs; i.e., there exists an
Eλ ∈ σ(Hα,λs) such that Λλs(Eλ) = 0. By the upper-semicontinuity of Lyapunov
exponents, there exists a δλ > 0, for each λ ∈ K, such that Λus(Eλ) < δ for any
u ∈ B(λ, δλ) := {t ∈ R : |t− λ| < δλ}. As K is compact, there exist u1, . . . , u� ∈ K

such that K ⊆
⋃�

i=1 B(ui,
δui

2 ). Then

Λλs(Eui
) < δ for all 1 ≤ i ≤ � and λ ∈ B(ui, δui

) ∩K.

Let {fn} ⊂ C(T) be such that
∫
T
|s(θ) − fn(θ)|dθ < 1

n and ‖s − fn‖∞ < ε
2 for

all n ∈ N. We claim that there exists an n∗ ∈ N such that Λλfn∗ (Eui
) < δ for all

1 ≤ i ≤ � and λ ∈ B(ui,
δui

2 ) ∩ K; i.e., f =: fn∗ has the desired properties that
f ∈ MK,δ and ‖f − g‖∞ < ε.

If the claim is not true, then for each n ∈ N there exist in ∈ {1, 2, . . . , �} and

λn ∈ B(uin ,
δuin

2 ) ∩K such that Λλnfn(Euin
) ≥ δ. Without loss of generality, we

assume that limn→∞ λn = λ0 for some λ0 ∈ K and in ≡ i0 ∈ {1, 2, . . . , �} for all
n ∈ N. It is clear that λ0 ∈ B(ui0 , δui0

) ∩K and limn→∞
∫
T
|λ0s(θ)−λnfn(θ)|dθ=0.

Hence by the upper semi-continuity of Lyapunov exponents, we have

δ > Λλ0s(Eui0
) ≥ lim sup

n→∞
Λλnfn(Eui0

) ≥ δ,

a contradiction. �

Proof of Theorem 1. Let Kn = [ 1n , n], n ∈ N. Then by Lemma 2.3,

{f ∈ C(T) : inf
E∈R

Λλf (E) = 0 for any λ > 0} =

∞⋂
n=1

MKn,0

is residual. �

Proof of Theorem 2. It is sufficient to show that for any non-empty compact set
K ⊆ (0,∞), the set

NK = {f ∈ C(T) : ∃λ ∈ K s.t. Aλf (n, ·) is non-uniformly hyperbolic}
is a meagre set, i.e., a countable union of nowhere-dense sets. This will follow once
we prove that

NK,γ = {f ∈ C(T) : ∃λ ∈ K s.t. Aλf (n, ·)
is non-uniformly hyperbolic and Λλf ≥ γ}

is nowhere dense for every γ > 0.
Let γ > 0 be given. We first show that NK,γ is closed. Let {fi} ⊂ NK,γ and

f0 ∈ C(T) be such that limi→∞ ‖fi − f0‖∞ = 0. Then for each i ∈ N, there
exists a λi ∈ K such that Aλifi(n, ·) is non-uniformly hyperbolic and Λλifi ≥ γ.
Without loss of generality, we assume that limi→∞ λi = λ0 for some λ0 ∈ K. Then
limi→∞ ‖λifi − λ0f0‖∞ = 0, and hence Λλ0f0 ≥ lim supi→∞ Λλifi ≥ γ according to
the upper semi-continuity of Lyapunov exponents. Since uniform hyperbolicity is an
open property, Aλ0f0(n, ·) is non-uniformly hyperbolic. This shows that f0 ∈ NK,γ .
Hence NK,γ is closed.
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Next we show that NK,γ has no interior. This amounts to showing that for any
given f ∈ NK,γ and ε > 0 there exists a function g ∈ C(T) such that ‖f − g‖∞ < ε
and g �∈ NK,γ . For the given f ∈ NK,γ , we let λ∗ ∈ K be such that Aλ∗f (n, ·)
is non-uniformly hyperbolic and Λλ∗f ≥ γ. Also let {sm} be a sequence of step
functions of the form (2.1) in the ε

4 -neighborhood of f that converge to f in the
L∞ topology. Then for each θ ∈ T, the operators Hm = �+λ∗sm(·α+ θ) converge
strongly to H = � + λ∗f(·α + θ). Since Aλ∗f (n, ·) is non-uniformly hyperbolic,
we have by Theorem 2.2 that 0 ∈ σ(H). By the strong convergence of Hm, we
also have a sequence {Em} ⊂ σ(Hm) such that Em → 0. Now let m � 1 be fixed
such that |Em| < ε

4 . Then s = sm − Em is a step function of the form (2.1) in the
ε
2 -neighborhood of f such that 0 belongs to the spectrum of H = �+ λ∗s(·α+ θ).
It follows from Theorem 2.1 that Λλ∗s = 0. Now consider a sequence of continuous
functions {gi} ⊂ C(T) with

∫
T
|s(θ)− gi(θ)|dθ < 1

i and ‖s− gi‖∞ < ε
2 for all i ∈ N.

We have by the upper semi-continuity of Lyapunov exponents that

0 = Λλ∗s ≥ lim
i→∞

Λλ∗gi .

Hence we can choose a k ∈ N such that the function g = gk has the desired
properties that Λλ∗g < γ and ‖f − g‖∞ < ε. �
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