Chaotic solution for the Black-Scholes equation
HTML articles powered by AMS MathViewer
- by Hassan Emamirad, Gisèle Ruiz Goldstein and Jerome A. Goldstein
- Proc. Amer. Math. Soc. 140 (2012), 2043-2052
- DOI: https://doi.org/10.1090/S0002-9939-2011-11069-4
- Published electronically: October 5, 2011
- PDF | Request permission
Corrigendum: Proc. Amer. Math. Soc. 142 (2014), 4385-4386.
Abstract:
The Black-Scholes semigroup is studied on spaces of continuous functions on $(0,\infty )$ which may grow at both 0 and at $\infty ,$ which is important since the standard initial value is an unbounded function. We prove that in the Banach spaces \[ Y^{s,\tau }:=\{u\in C((0,\infty )):\;\lim _{x\rightarrow \infty } \frac {u(x)}{1+x^{s}} =0, \; \lim _{x\rightarrow 0}\frac {u(x)}{1+x^{-\tau }} =0\} \] with norm $\left \Vert u\right \Vert _{Y^{s,\tau }}=\underset {x>0}{\sup }\left \vert \frac {u(x)}{(1+x^{s})(1+x^{-\tau })}\right \vert <\infty ,$ the Black-Scholes semigroup is strongly continuous and chaotic for $s>1$, $\tau \geq 0$ with $s\nu >1$, where $\sqrt 2\nu$ is the volatility. The proof relies on the Godefroy-Shapiro hypercyclicity criterion.References
- Wolfgang Arendt and Ben de Pagter, Spectrum and asymptotics of the Black-Scholes partial differential equation in $(L^1,L^\infty )$-interpolation spaces, Pacific J. Math. 202 (2002), no. 1, 1–36. MR 1883968, DOI 10.2140/pjm.2002.202.1
- F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973), 637-654.
- D. I. Cruz-Báez and J. M. González-Rodríguez, Semigroup theory applied to options, J. Appl. Math. 2 (2002), no. 3, 131–139. MR 1915662, DOI 10.1155/S1110757X02111041
- D. I. Cruz-Báez and J. M. González-Rodríguez, A semigroup approach to American options, J. Math. Anal. Appl. 302 (2005), no. 1, 157–165. MR 2107354, DOI 10.1016/j.jmaa.2004.07.047
- Ralph deLaubenfels, Polynomials of generators of integrated semigroups, Proc. Amer. Math. Soc. 107 (1989), no. 1, 197–204. MR 975637, DOI 10.1090/S0002-9939-1989-0975637-7
- R. deLaubenfels and H. Emamirad, Chaos for functions of discrete and continuous weighted shift operators, Ergodic Theory Dynam. Systems 21 (2001), no. 5, 1411–1427. MR 1855839, DOI 10.1017/S0143385701001675
- Wolfgang Desch, Wilhelm Schappacher, and Glenn F. Webb, Hypercyclic and chaotic semigroups of linear operators, Ergodic Theory Dynam. Systems 17 (1997), no. 4, 793–819. MR 1468101, DOI 10.1017/S0143385797084976
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Jerome A. Goldstein, Some remarks on infinitesimal generators of analytic semigroups, Proc. Amer. Math. Soc. 22 (1969), 91–93. MR 243384, DOI 10.1090/S0002-9939-1969-0243384-2
- Jerome A. Goldstein, Abstract evolution equations, Trans. Amer. Math. Soc. 141 (1969), 159–185. MR 247524, DOI 10.1090/S0002-9947-1969-0247524-5
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- J. A. Goldstein, R. M. Mininni, and S. Romanelli, A new explicit formula for the solution of the Black-Merton-Scholes equation, Infinite dimensional stochastic analysis, QP–PQ: Quantum Probab. White Noise Anal., vol. 22, World Sci. Publ., Hackensack, NJ, 2008, pp. 226–235. MR 2412891, DOI 10.1142/9789812779557_{0}013
- Karl-Goswin Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 3, 345–381. MR 1685272, DOI 10.1090/S0273-0979-99-00788-0
- K.-G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 97 (2003), no. 2, 273–286 (English, with English and Spanish summaries). MR 2068180
- C. R. MacCluer,Chaos in linear distributed systems. J. Dynam. Systems Measurement Control 114 (1992), 322-324.
- Mai Matsui and Fukiko Takeo, Chaotic semigroups generated by certain differential operators of order 1, SUT J. Math. 37 (2001), no. 1, 51–67. MR 1849367
- V. Protopopescu and Y. Y. Azmy, Topological chaos for a class of linear models, Math. Models Methods Appl. Sci. 2 (1992), no. 1, 79–90. MR 1159477, DOI 10.1142/S0218202592000065
- F. Takeo, Chaos and hypercyclicity for solution semigroups to some partial differential equations. Nonlinear Analysis63 (2005), 1943-1953.
Bibliographic Information
- Hassan Emamirad
- Affiliation: Laboratoire de Mathématiques, Université de Poitiers, teleport 2, BP 179, 86960 Chassneuil du Poitou, Cedex, France
- Email: emamirad@math.univ-poitiers.fr
- Gisèle Ruiz Goldstein
- Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
- MR Author ID: 333750
- Email: ggoldste@memphis.edu
- Jerome A. Goldstein
- Affiliation: Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
- MR Author ID: 74805
- Email: jgoldste@memphis.edu
- Received by editor(s): August 18, 2009
- Received by editor(s) in revised form: September 13, 2010, December 18, 2010, and February 9, 2011
- Published electronically: October 5, 2011
- Communicated by: Thomas Schlumprecht
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2043-2052
- MSC (2010): Primary 47D06, 91G80, 35Q91
- DOI: https://doi.org/10.1090/S0002-9939-2011-11069-4
- MathSciNet review: 2888192