A NECESSARY AND SUFFICIENT CONDITION FOR RICCI SHRINKERS TO HAVE POSITIVE AVR

BENNETT CHOW, PENG LU, AND BO YANG

(Communicated by Jianguo Cao)

Abstract. In this short paper we observe that a recent result of C.-W. Chen meshes well with earlier work of H.-D. Cao and D.-T. Zhou, O. Munteanu, J. Carrillo and L. Ni, and S.-J. Zhang. We give a necessary and sufficient condition for complete noncompact shrinking gradient Ricci solitons to have positive asymptotic volume ratio.

Let \((\mathcal{M}^n, g, f)\) denote a complete shrinking gradient Ricci soliton (shrinker for short) with \(R_{ij} + \nabla_i \nabla_j f - \frac{1}{2} g_{ij} = 0\). Throughout we shall assume that \(f\) is the normalized potential function in the sense that \(R + |\nabla f|^2 - f = 0\) holds on \(\mathcal{M}\).

It was proved by B.-L. Chen \[3\] that complete ancient solutions to the Ricci flow, and in particular shrinkers, must have nonnegative scalar curvature. As a consequence, the potential function \(f\) satisfies the estimate:

\[
0 \leq f(x) \leq \left(\frac{1}{2} r(x) + f(O)^{\frac{1}{2}} \right)^2,
\]

where \(r(x)\) denotes the distance function to a fixed point \(O\) in \(\mathcal{M}\). H.-D. Cao and Detang Zhou \[1\] proved that there exists a positive constant \(C\) which depends on the dimension \(n\), \(\sup_{y \in B(O,1)}|\nabla f|(y)\), and the minimum of the Ricci curvature \(R_{cg}\) in the ball \(B(O,1)\) such that \(f\) satisfies the lower estimate

\[
f(x) \geq \frac{1}{4} (r(x) - C)^2
\]

for \(x \in \mathcal{M} - B(O, C)\) (see Fang, Man, and Zhang \[5\] for related estimates). In fact, carefully following the proof of \[1\] and integrating by parts yield:

\[
f(x) \geq \frac{1}{4} \left[(r(x) - 4n - 2f(O)^{\frac{1}{2}} + \frac{4}{3} c_x)^+ \right]^2,
\]

where \(c_x \doteq \max(c, 0)\). Recently Haslhofer and Müller \[6\] further observed that if the reference point \(O\) is chosen to be a global minimum point of \(f\) (its existence is ensured by \[1\] and \[2\]), then one obtains improved estimates with constants depending only on \(n\):

\[
\frac{1}{4} [(r(x) - 5n)^+]^2 \leq f(x) \leq \frac{1}{4} (r(x) + \sqrt{2n})^2.
\]
Define the functions

\[V : \mathbb{R} \to [0, \infty), \quad R : \mathbb{R} \to [0, \infty) \]

by

\[V(c) \triangleq \int_{\{f < c\}} d\mu, \quad R(c) \triangleq \int_{\{f < c\}} R d\mu. \]

In [1], the following ODE relating \(V(c) \) and \(R(c) \) was established:

\[0 \leq \frac{n}{2} V(c) - R(c) = c V'(c) - R'(c). \]

Recall that the asymptotic volume ratio (AVR) of a complete noncompact Riemannian manifold \((N^n, h)\) is defined by

\[\text{AVR}(h) \triangleq \lim_{r \to \infty} \frac{\text{Vol} B(p, r)}{\omega_n r^n} \]

if the limit exists, where \(B(p, r) \) denotes the geodesic ball in \(N \) with center \(p \) and radius \(r \) and where \(\omega_n \) is the volume of the unit Euclidean \(n \)-ball. It is easy to check that the AVR\((h)\) is independent of the choice of \(p \). Moreover, if \(h \) has nonnegative Ricci curvature, then this limit exists by the Bishop–Gromov volume comparison theorem.

Theorem 1. Any complete noncompact shrinking gradient Ricci soliton must have at most Euclidean volume growth; i.e., \(\limsup_{r \to \infty} \frac{\text{Vol} B(O, r)}{\omega_n r^n} \) is finite.

Note that an earlier result by Carrillo and Ni [2] states that any nonflat shrinker with nonnegative Ricci curvature must have zero AVR. Based on Cao and Zhou’s work, Zhang [8] proved a sharp upper bound on the volume growth of shrinkers under the assumption that \(R \geq \delta \) for some constant \(\delta > 0 \). More recently, C.-W. Chen [4] proved that the AVR of a shrinker is bounded from below by some \(c > 0 \) if the average scalar curvature satisfies \(\frac{1}{\text{Vol} B(O, r)} \int_{B(O, r)} R d\mu \leq r^\alpha \), where \(\alpha \) is a negative constant (see also [1] for a similar result in the case where \(\alpha = 0 \)).

We observe that the results in [2], [1], [7], [8], and [4] lead to a necessary and sufficient condition for noncompact shrinkers to have positive AVR.

Theorem 2. Let \((M^n, g, f)\) be a complete noncompact shrinking gradient Ricci soliton. Then \(\text{AVR}(g) \) exists and is finite (by [6], it is bounded by a constant depending only on \(n \)). Moreover, \(\text{AVR}(g) > 0 \) if and only if \(\int_{n+2}^{\infty} \frac{R(c)}{c V(c)} dc < \infty \).

Proof. Let \(P(c) \triangleq \frac{V(c)}{c^\frac{n}{2}} - \frac{R(c)}{c^{\frac{n+2}{2}}} \) and \(N(c) \triangleq \frac{R(c)}{c V(c)} \). Note that \(\frac{R(c)}{V(c)} \) is the average scalar curvature over the set \(\{f < c\} \). The ODE (5) implies that

\[P'(c) = -\left(1 - \frac{n + 2}{2c}\right) \frac{R(c)}{c^{\frac{n+2}{2}}} = -\left(1 - \frac{n + 2}{2c}\right) \frac{N(c)}{1 - N(c)} \cdot P(c). \]

Since \(0 \leq R(c) \leq \frac{n}{2} V(c) \) by (5), we have

\[\left(1 - \frac{n}{2c}\right) \frac{V(c)}{c^\frac{n}{2}} \leq P(c) \leq \frac{V(c)}{c^\frac{n}{2}}. \]
Hence, by the bounds (1) and (2) for f,
\[2^n \omega_n \text{AVR}(g) = \lim_{c \to \infty} \frac{V(c)}{e^{n/2}} = \lim_{c \to \infty} P(c),\]
which exists by (7).

Integrating (7) yields
\[(9) \quad P(c) = P(n + 2) e^{-\int_{n+2}^{c} \frac{(1 - n + 2)}{1 - N(c)} N(c) \, dc}\]
for $c \geq n + 2$. From $\frac{R(c)}{V(c)} \leq \frac{2}{n}$ it is easy to see that for any $c \in [n + 2, \infty)$ we have
\[(10) \quad \frac{1}{2} \int_{n+2}^{c} N(c) \, dc \leq \int_{n+2}^{c} \left(1 - \frac{n + 2}{2c}\right) \frac{N(c)}{1 - N(c)} \, dc \leq 2 \int_{n+2}^{c} N(c) \, dc.\]

If $\int_{n+2}^{\infty} N(c) \, dc = \infty$, then by (10) we have $\text{AVR}(g) = \frac{1}{2^n \omega_n} \lim_{c \to \infty} P(c) = 0$.

If $\int_{n+2}^{\infty} N(c) \, dc < \infty$, then by (9) and (10), we have
\[P(c) \geq P(n + 2) e^{-2 \int_{n+2}^{\infty} N(c) \, dc} > 0.\]
Hence $\text{AVR}(g) > 0$. □

Acknowledgment

We would like to thank Lei Ni for his interest and encouragement.

References

Department of Mathematics, University of California San Diego, La Jolla, California 92093
E-mail address: benchow@math.ucsd.edu

Department of Mathematics, University of Oregon, Eugene, Oregon 97403
E-mail address: penglu@uoregon.edu

Department of Mathematics, University of California San Diego, La Jolla, California 92093
E-mail address: b5yang@math.ucsd.edu